Math, asked by aroramadhav022, 1 month ago

O is any point in interior of rectangle ABCD prove that

Answers

Answered by ItzMeMukku
5

\large\bf{\underline{\underline{Correct\:Question:−}}}

A point O is in the interior of a rectangle ABCD, is joined with each of the vertices A, B, c & D Prove that OA2 +OC2 08+00

\large\bf{\underline{\underline{Answer :-}}}

\underline{\boxed{\sf\purple{We \:draw \:PQ \:║\:AB\: ║\:CD}}}

ABCD is a rectangle , it means ABPQ and PQDC are also rectangle

\sf{For\: , ABPQ ,}

\underline{\boxed{\sf\purple{}}}AP = BQ [opposite sides are equal ]

\sf{For,\: PQDC}

\underline{\boxed{\sf\purple{PD \:=\: QC}}} \tiny\sf\color{red}{[ opposite\: sides\: are \:equal ]}

\sf{now, \:for \:∆OPD,}

\underline{\boxed{\sf\purple{OD² = OP² + PD² ------(1)}}}

\sf{For,\: ∆OQB,}

\underline{\boxed{\sf\purple{OB² = OQ² + BQ² --------(2)}}}

\textbf{Add equations (1) and (2),}

\color{blue}\boxed{\sf{OB² + OD² = (OP² + PD²)+ (OQ² + BQ²)}}

\color{blue}\boxed{\sf{= (OP² + CQ²) + (OQ² + AP²)}}

\small\textbf{∆OPA and ∆OQC are also right angled triangles}

\underline{\boxed{\sf\purple{For, \:∆OCQ}}}

\rm{⇒OQ² + CQ² = OC²}

\underline{\boxed{\sf\purple{For,\:∆OPA}}}

\rm{⇒OP² + AP² = OA²}

\underline{\boxed{\sf\purple{Now ,}}}

\red{\bf {OB² \:+\: OD² \:= \:OC² \:+\: OA²}}

\sf{Hence,\: proved}

Thankyou :)

Similar questions