Math, asked by prajaktakhurpe9921, 1 year ago

O is any point in the interior of

ABC. Bisectors of

AOB,

BOC
and

AOC
intersect
side
AB,
side
BC,
side
AC
in
F, D
and
E
respectively.
Prove that
BF
×
AE
×
CD = AF
×
CE
×
BD

Answers

Answered by niharikashah4
9

Answer:


Step-by-step explanation:



In ∆ AOB, OD is the bisector of angle AOB


OA/OB =AD/DB---------------eq(1)

 

Theorem used here


[The internal bisector of an angle of a triangle divides the opposite side internally in the ratio of the sides containing the angle]


In ∆BOC .OE is the bisector of angle BOC


OB/OC = BE/EC---------eq(2)


In  ∆COA, OF is the bisector of angle COA


OC/OA =CF/FA-----------eq(3)


Multiplying eq 1, 2, 3 


(OA/OB) * (OB/OC)  * (OC/OA) = (AD/DB) * (BE/EC) * (CF/FA)


1= (AD/DB) * (BE/EC) * (CF/FA)


DB*EC*FA = AD*BE*CF

-----------------------------------------------------------------------------------------------------


AD*BE*CF = DB*EC*FA

---------------------------------------------------------------------------------------------------

Hope this will help you.....



Answered by Anonymous
1

Answer:

Step-by-step explanation:

In ∆ AOB, OD is the bisector of angle AOB

OA/OB =AD/DB---------------eq(1)

 

Theorem used here

[The internal bisector of an angle of a triangle divides the opposite side internally in the ratio of the sides containing the angle]

In ∆BOC .OE is the bisector of angle BOC

OB/OC = BE/EC---------eq(2)

In  ∆COA, OF is the bisector of angle COA

OC/OA =CF/FA-----------eq(3)

Multiplying eq 1, 2, 3 

(OA/OB) x (OB/OC)  x (OC/OA) = (AD/DB) x (BE/EC) x (CF/FA)

1= (AD/DB) x (BE/EC) x (CF/FA)

DBxECxFA = ADxBExCF

-----------------------------------------------------------------------------------------------------

ADxBExCF = DBxECxFA

Similar questions