Math, asked by karan5893, 1 year ago

O is any point in the interior of triangle ABC.Bisectors of angle AOB ANGLE BOC ANGLE AOC intersect side AB ,side BC,side AC in F,D,E respective ly.prove that BF×AE×CD=AF×CE×BD

Attachments:

Answers

Answered by geethashetty15
61

In ∆ AOB, OD is the bisector of angle AOB

OA/OB =AD/DB---------------eq(1)

 

Theorem used here

[The internal bisector of an angle of a triangle divides the opposite side internally in the ratio of the sides containing the angle]

In ∆BOC .OE is the bisector of angle BOC

OB/OC = BE/EC---------eq(2)

In  ∆COA, OF is the bisector of angle COA

OC/OA =CF/FA-----------eq(3)

Multiplying eq 1, 2, 3 

(OA/OB) * (OB/OC)  * (OC/OA) = (AD/DB) * (BE/EC) * (CF/FA)

1= (AD/DB) * (BE/EC) * (CF/FA)

DB*EC*FA = AD*BE*CF

-----------------------------------------------------------------------------------------------------

AD*BE*CF = DB*EC*FA

---------------------------------------------------------------------------------------------------

Hope this will help you.....

Answered by omprashantp22
12

Answer:

Step-by-step explanation:

AO/OB=AF/FB by angle bisector theorem

OB/OC=BD/DC

OC/OA=CE/AS

AO/OB×OB/OC×OC/OA=AF/FB×BF/DC×CE/AE

THUS AF×BD×CE=BF×AE×CD

Similar questions