o is any point inside a rectangle ABCD . prove that OB²+OD²=OA²+OC²
Answers
Answered by
1
Answer:
(OA)^2+(OC)^2=(OB)^2+(OD)^2
Step-by-step explanation:
Now, (OA)^2 +(OC)^2 =(AS)^2 +(OS)^2 +(OQ)^2+(QC )^2
(Considering right triangles ASO and COQ)
But AS=BQ and QC=SD, Therefore,
(OA)^2+(OC)^2 =(BQ)^ + (OS )^2+(OQ)^2 +(SD) ^2
(OA)^2 +(OC)^2 =(BQ)^2 +(OQ)^2)+(OS)^2+(SD) ^2
(OA)^2+(OC)^2 =(OB)^2 +(OD)^2
(Considering right triangles OSD and OBQ)
Similar questions