Math, asked by no1geniuakash, 1 year ago

O is any point inside the rectangle ABCD then prove that OB^2 + OD^2 = OA^2 + OC^2

Answers

Answered by Anonymous
19

{\mathfrak{\red{\underline{\underline{Solution:-}}}}}

\sf{From\;the\;point\;O\;construct\;perpendiculars\;OP,\;OQ,\;OR\;and\;OS}\sf{to\;the\;side\;of\;the\;rectangle}

\sf{LHS=OA^{2}+OC^{2}}

\sf{=(AS^{2}+OS^{2})+(OQ^{2}+QC^{2})\;\;\;(Considering\;right\;triangles\;ASO\;andCOQ)}

\sf{But\;AS=BQ\;and\;OQ=BP.\;Therefore,}

\sf{(AS^{2}+OS^{2})+(OQ^{2}+QC^{2})}

\sf{=(BQ^{2}+OS^{2})+(OQ^{2}+QC^{2})}

\sf{=(BQ^{2}+OQ^{2})+(OS^{2}+QC^{2})}

\sf{=OB^{2}+OD^{2}\;\;\;\;(Considering\;right\;triangles\;BOQ\;and\;ODS)}

\sf{=RHS}

\huge{\bf{\underline{Hence\;Proved}}}

Attachments:
Similar questions