Math, asked by abhilashk135776, 1 year ago

O is any point on the triangle ABC prove that angle AOB >angle ABC

Answers

Answered by robinbeniwal
0

Answer:

In ∆ AOB, OD is the bisector of angle AOB

OA/OB =AD/DB---------------eq(1)

 

Theorem used here

[The internal bisector of an angle of a triangle divides the opposite side internally in the ratio of the sides containing the angle]

In ∆BOC .OE is the bisector of angle BOC

OB/OC = BE/EC---------eq(2)

In  ∆COA, OF is the bisector of angle COA

OC/OA =CF/FA-----------eq(3)

Multiplying eq 1, 2, 3 

(OA/OB) * (OB/OC)  * (OC/OA) = (AD/DB) * (BE/EC) * (CF/FA)

1= (AD/DB) * (BE/EC) * (CF/FA)

DB*EC*FA = AD*BE*CF

-----------------------------------------------------------------------------------------------------

AD*BE*CF = DB*

Similar questions