o is the centre of the circle and ab is the chord if od perpendicular ab find radius of the circle
Answers
Answered by
2
in triangle oad
oa is radius
![{oa}^{2} = {ad}^{2} + {od}^{2} \\ oa = \sqrt{ {ad}^{2} + {od}^{2} } \\ radius = \sqrt{ { \frac{ab}{4} }^{2} + {od}^{2} } \\ {oa}^{2} = {ad}^{2} + {od}^{2} \\ oa = \sqrt{ {ad}^{2} + {od}^{2} } \\ radius = \sqrt{ { \frac{ab}{4} }^{2} + {od}^{2} } \\](https://tex.z-dn.net/?f=+%7Boa%7D%5E%7B2%7D++%3D++%7Bad%7D%5E%7B2%7D++%2B++%7Bod%7D%5E%7B2%7D++%5C%5C+oa+%3D++%5Csqrt%7B+%7Bad%7D%5E%7B2%7D+%2B++%7Bod%7D%5E%7B2%7D++%7D++%5C%5C+radius+%3D++%5Csqrt%7B+%7B+%5Cfrac%7Bab%7D%7B4%7D+%7D%5E%7B2%7D+%2B++%7Bod%7D%5E%7B2%7D++%7D++%5C%5C+)
oa is radius
Similar questions