Math, asked by Indianpatriot, 9 months ago

o is the centre of the circle is a st is tangent to the circle at d. ∠abo=30°, ∠bds=64° find:
∠bad
∠bcd
∠adt
CORRECT ANSWER WILL BE GIVEN BRAINLIEST
WORST ANSWERS ARE STRICTLY NOT ALLOWED

Attachments:

Answers

Answered by VaibhavSR
6

Answer:

∠BAD=64°

∠BCD=116°

∠ADT=46°

Step-by-step explanation:

  • Given ST is the tangent to the circle so ∠ODS=90°
  • ∠BAD=64°   [Angles in the alternate segment]
  • ABCD is a cyclic quadrilateral and the sum of opposite angles in a cyclic quadrilateral is 180°.
  • So,∠BCD+∠BAD=180°

          ⇒∠BCD=180°-64°

          ∴ ∠BCD=116°

  • In ΔOBD, ∠ODB=90°-∠BDS

                     ⇒∠ODB=90°-64°

                     ∴∠ODB=26°=∠OBD      [∵OB=OD]

  • In ΔABD, ∠ADB=180°-(∠BAD+∠DBA)

                      ⇒∠ADB=180°-(64°+56°)

                      ⇒∠ADB=180°-110°

                      ∴ ∠ADB=70°

  • ∴ ∠ODA=∠ADB-∠ODB

                      =70°-26°

                      =44°

  • Now,∠ADT+∠ODA=∠ODT=90°   [∵ST is the tangent]

             ⇒∠ADT=90°-44°

             ∴ ∠ADT=46°

#SPJ3

Similar questions