Math, asked by Anonymous, 6 months ago

O is the circumcenter of Angle ABC and OAC =50° , then the value of Angle ABC is ...​

Answers

Answered by janvimanhas56
0

Answer:

In triangle ABC, o is the circumcenter and angle BAC=85 and angle BCA=75. What is angle OAC equal to?

High-impact mock tests for IIT JEE, BITSAT and more.

Given that in [math]\Delta ABC[/math] , [math]\angle BAC=85^\circ[/math] & [math]\angle BCA=75^\circ[/math]

[math]\therefore \angle ABC=180^\circ-\angle BAC-\angle BCA[/math]

[math]=180^\circ-85^\circ-75^\circ[/math]

[math]=20^\circ[/math]

Now, by property of chord of circle that the angle subtended by any chord at the center of circle is equal to double the angle subtended by the same chord at any point in the corresponding segment of circle,

[math]\therefore \angle AOC=2\angle ABC=2(20^\circ)=40^\circ[/math]

Now, in isosceles [math]\Delta AOC[/math] , [math]\angle OAC=\angle OCA[/math]

[math]\therefore \angle AOC+\angle OAC+\angle OCA=180^\circ[/math]

[math]40^\circ+2\angle OAC=180^\circ\quad (\because \ \angle OCA=\angle OAC)[/math]

[math]\angle OAC=\frac{180^\circ-40^\circ}{2}[/math]

[math]=70^\circ[/math]

Samsung Galaxy F41 I Sale starts 16th Oct.

O is the circumcenter of triangle ABC . Therefore OA = OB = OC =radius of circumcircle.

In triangle ABC :-

Angle BAC+Angle ABC +Angle BCA=180°.

85°+AngleABC +75° =180°

Angle ABC =180°-160° = 20°.

In triangle OAC:-

OA =OC = radius of circumcircle.

so that angle OAC = angle OCA = x°(let).

Angle AOC = 2×Angle ABC = 2×20° = 40°.

Angle OAC + Angle OCA+ Angle AOC = 180°.

x`+ x° + 40° = 180°.

2x° = 180° - 40° = 140°.

x = 140°/2 = 70°.

Angle OAC = x° =70°

Similar questions