Math, asked by antarasanyal05, 3 months ago

o Prove that ;

1/1+sin2theta + 1/1+cos2theta +1/1+sec2theta +1/1+cosec2theta = 2​

Answers

Answered by Salmonpanna2022
5

Answer:

Given that:-

 \tt \red{ \frac{1}{1 +  { \sin }^{2}  θ}  +  \frac{1}{1 +  { \cos}^{2} θ}  +  \frac{1}{1 +  { \sec }^{2} θ}  +   \frac{1}{1 +  \csc^{2}  θ}  = \green 2 }\\  \\

What to do:-

To prove LHS = RHS.

Solution:-

 \tt \red{ \frac{1}{1 +  { \sin }^{2}  θ}  +  \frac{1}{1 +  { \cos}^{2} θ}  +  \frac{1}{1 +  { \sec }^{2} θ}  +   \frac{1}{1 +  \csc^{2}  θ}  = \green 2 }\\  \\

⟹  \tt \red{\frac{1}{1 +  { \sin}^{2}θ }  +  \frac{1}{1 +  { \cos }^{2} θ}  +  \frac{1}{1 +  \frac{1}{ { \cos}^{2} θ } }  +  \frac{1}{1 +  \frac{1}{ { \sin }^{2} θ} }} =  \green2  \\  \\

⟹ \tt \red {\frac{1}{1 +   { \sin }^{2}θ  }  +  \frac{1}{1 +  { \cos }^{2} θ}  +  \frac{ { \cos }^{2} θ}{1 +  \frac{1}{ { \cos }^{2}θ } }  +  \frac{ { \sin }^{2}θ }{1 +  \frac{1}{ { \sin }^{2} θ} } } = \green 2 \\  \\

⟹  \tt \red{\frac{1}{1 +  { \sin }^{2}θ }  +  \frac{1}{1 { \cos }^{2} θ}  +  \frac{1}{ { \cos }^{2}θ + 1 }   +  \frac{1}{ { \sin }^{2} θ + 1} } =  \green2 \\  \\

⟹  \tt \red{\frac{1}{1 +  { \sin }^{2} θ}  +  \frac{ { \sin }^{2}θ }{1 +  { \sin }^{2}θ }  +  \frac{1}{1 +  { \cos }^{2}θ }  +  \frac{ { \cos }^{2} θ}{1 +  { \cos }^{2} θ} } =  \green2 \\  \\

⟹  \tt \red {\frac{1 +  { \sin }^{2} θ}{1 +  { \sin }^{2} θ}  +  \frac{1 +  { \cos }^{2} θ}{1 +  { \cos }^{2} θ}}  =  \green2 \\  \\

⟹1 + 1 =  \green2 \\  \\

⟹ \red2 =  \green2 \\  \\

LHS= RHS

Hence Proved.

Attachments:
Similar questions