Math, asked by Anonymous, 3 months ago

Oʙᴛᴀɪɴ ᴀʟʟ ᴛʜᴇ ᴢᴇʀᴏᴇs
3x ^{2}  \times 6x^{2}  - 2x ^{2} - 10x - 5
ɪғ ᴛᴡᴏ ᴏғ ɪᴛs ᴢᴇʀᴏ ᴀʀᴇ
  \sqrt \frac{5}{3}
ᴀɴᴅ
 -   \sqrt \frac{5}{3}

Answers

Answered by hemanthvadapalli123
4

\huge\bold{Correct}

\huge\bold{\: \: \: Question:-}

  • Obtain all other zeroes of 3 {x}^{4}  + 6 {x}^{3}  - 2 {x}^{ {2}}  - 10x - 5
  • If two zeroes are  \sqrt{ \frac{5}{3} }  \:  \: and \:   \:   - \sqrt{ \frac{5}{3} }

\huge\bold{Solution:-}

Let,

p(x) = 3 {x}^{4}  + 6 {x}^{3}  - 2 {x}^{2}  - 10x - 5

Given,

 \sqrt{ \frac{5}{3} }  \: \: and \:   \:   - \sqrt{ \frac{5}{3} }

are roots of p( x )

So,

(x -   \sqrt{{ \frac{5}{3} } } )

(x  + \sqrt{ \frac{5}{3} }) are factors of p( x )

Also,

(x +  \sqrt{ \frac{5}{3} } )(x -  \sqrt{ \frac{5}{3} } )is a factor of p( x )

i.e

 {x}^{2}  -  \frac{5}{3} is a factor of p ( x )

Divide p( x ) with it's factor

 \frac{3 {x}^{4} + 6 {x}^{3} - 2 {x}^{2}  - 10x - 5  }{ {x}^{2} -  \frac{5}{3}  }

See the attachment

It gives

3 {x}^{2}  + 6x + 3

Factorize it

3 \times 3 = 9

3 + 3 = 6

So,

3 {x}^{2}  + 3x + 3x + 3

3x(x + 1) + 3(x + 1)

(x + 1)(3x +3 )

x + 1 = 0

x =  - 1

And

3x + 3 = 0

3x =  - 3

x =  -  \frac{ 3}{3}  =  - 1

The other factors are -1 and -1

Hope this is helpful

Attachments:
Answered by XxItzAdyashaxX
3

Answer:

Refer the above attachment

Attachments:
Similar questions