o tan 48° tan 23° tan 42° tan 67° = 1
(1) cos 38° cos 52° -sin 38° sin 52° = 0
13. Iftan 2A = cot (A-18°), where 2A is an acute angle, find the value of A.
4. If tan A = cot B, prove that A + B = 90°.
5. If sec 4A = cosec (A - 20°), where 4A is an acute angle, find the value of A.
Answers
Answered by
2
Answer:
This implies that
x2+2ax=4x−4a−13
or
x2+2ax−4x+4a+13=0
or
x2+(2a−4)x+(4a+13)=0
Since the equation has just one solution instead of the usual two distinct solutions, then the two solutions must be same i.e. discriminant = 0.
Hence we get that
(2a−4)2=4⋅1⋅(4a+13)
or
4a2−16a+16=16a+52
or
4a2−32a−36=0
or
a2−8a−9=0
or
(a−9)(a+1)=0
So the values of a are −1 and 9.
Similar questions