Math, asked by vanshmaurya007, 9 months ago

o
 if \:  \alpha  \: and \:  \beta  \: are \: the \: roots \: of \: a {x }^{2}  - bx + c = 0 \: then \: calculate \:  \alpha  +  \beta

Answers

Answered by ayushsinghbisht62005
1

Hey mate this is your answer hope it helps.

Plzzzz mark as brainliest

Attachments:
Answered by Anonymous
2

 \mathcal  {\purple {SOLUTION:-}} \\ \\ \\ </p><p> \tt \alpha \: and  \: \beta \: are \: the \:roots \\ </p><p> \tt \:of \: the \: Equation \: \implies\:  ax^2 + bx + c = 0 \\ \\</p><p>  </p><p>  \tt \therefore \: \: \alpha \:= \:\frac{-b + \sqrt{b^2 - 4ac}}{2a} \\ \\</p><p>  \tt \therefore \: \: \beta \: = \: \frac{-b - \sqrt{b^2 - 4ac}}{2a} \\ \\</p><p></p><p>   \tt \red{{now,}} \\ \\ </p><p></p><p>  \tt \: \alpha + \beta\: = \: \frac{-b + \sqrt{b^2 - 4ac}}{2a} + \frac{-b - \sqrt{b^2 - 4ac}}{2a} \\ \\</p><p></p><p>\tt \: = \: \frac{-b + \sqrt{b^2 - 4ac} - b - \sqrt{b^2 - 4ac}}{2a} \\ \\ </p><p></p><p>\tt \:  = \: - \frac{2b}{2a} \\ \\ </p><p></p><p>\tt \therefore \pink {\boxed {\alpha + \beta \: = \: - \frac{b}{a}}}

Similar questions