Math, asked by anokanu068, 1 month ago

o to pie/2 log cot x dx


Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given integral is

\rm :\longmapsto\:\displaystyle\int_0^{ \dfrac{\pi}{2} }\rm  log(cotx) \: dx

Let assume that

\rm :\longmapsto\:I \:  =  \: \displaystyle\int_0^{ \dfrac{\pi}{2} }\rm  log(cotx) \: dx -  -  - (1)

We know,

\boxed{ \sf \: \displaystyle\int_0^{a}\rm  \: f(x) \: dx \:  =  \: \displaystyle\int_0^{a}\rm f(a - x) \: dx}

So, above integral can be rewritten as

\rm :\longmapsto\:I \:  =  \: \displaystyle\int_0^{ \dfrac{\pi}{2} }\rm  logcot \bigg[ \frac{\pi}{2} - x\bigg] \: dx

\rm :\longmapsto\:I \:  =  \: \displaystyle\int_0^{ \dfrac{\pi}{2} }\rm  log \: tanx \: dx  -  -  - (2)

On adding equation (1) and (2), we get

\rm :\longmapsto\:2I \:  =\displaystyle\int_0^{ \dfrac{\pi}{2} }\rm  log \: cotx \: dx  +  \displaystyle\int_0^{ \dfrac{\pi}{2} }\rm  log \: tanx \: dx

\rm :\longmapsto\:2I \:  =\displaystyle\int_0^{ \dfrac{\pi}{2} }\rm \bigg[ log \: cotx  + log \: tanx\bigg]\: dx

We know,

\boxed{ \sf \: logx \:  +  \: logy \:  =  \: logxy}

So, using this, we get

\rm :\longmapsto\:2I \:  =\displaystyle\int_0^{ \dfrac{\pi}{2} }\rm \bigg[ log \:( cotx   \times  tanx)\bigg]\: dx

We know,

\boxed{ \sf \: tanx =  \frac{1}{cotx}} \: \rm :\implies\:\boxed{ \sf \: tanx  \:  \times \: cotx \:  =  \: 1}

\rm :\longmapsto\:2I \:  =\displaystyle\int_0^{ \dfrac{\pi}{2} }\rm \bigg[ log \:( 1)\bigg]\: dx

We know,

\boxed{ \bf \: log1 \:  =  \:  0}

So, using this we get,

\rm :\longmapsto\:2I \:  =\displaystyle\int_0^{ \dfrac{\pi}{2} }\rm \bigg[ 0\bigg]\: dx

\rm :\longmapsto\:2I \:  =0

\rm :\longmapsto\:I \:  =0

Hence,

\bf\implies \:\:\displaystyle\int_0^{ \dfrac{\pi}{2} }\bf  log(cotx) \: dx = 0

Additional Information :-

\boxed{ \sf \: \displaystyle\int_a^{b}\rm f(x) \: dx \:  =  \: \displaystyle\int_a^{b}\rm f(y) \: dy}

\boxed{ \sf \: \displaystyle\int_a^{b}\rm f(x) \: dx \:  =  \:  -  \: \displaystyle\int_b^{a}\rm f(x) \: dx}

\boxed{ \sf \: \displaystyle\int_a^{b}\rm f(x) \: dx = \displaystyle\int_a^{b}\rm f(a + b - x) \: dx}

\boxed{ \sf \: \displaystyle\int_0^{ 2a }\rm  log \: f(x) \: dx  = 0, \:  \: if \: f(2a - x) =  - f(x)}

\boxed{ \sf \: \displaystyle\int_0^{ 2a }\rm  log \: f(x) \: dx  =2 \displaystyle\int_0^{a}\rm f(x) \: dx, \:if \: f(2a - x) = f(x)}

Similar questions