O1 and O2 are the centres of two congruent circles intersecting each other at point C and D. The line joining their centres intersects the circles in point A and B such that AB>O1O2.If CD=6cm and AB = 12 cm ,determine the radius of either circle.
Answers
Answered by
13
The radius of either circle is 3.75 cm
- From the figure below attached, it's clear that,
- O1 represents the circle 1 and O2 represents the circle 2.
- radius = O1C = O1D = O2C = O2C = O1A = O2B
- Therefore, we have O1CO2D as a rhombus
- As we know that the diagonal of rhombus are perpendicular bisector
- So, CD ⊥ O1O2 and CD bisect O1O2 ,
- Therefore
- Now triangle O1MC , we apply Pythagoras theorem , and get
- O1C^2 = O1M^2 + CM^2 , Substitute values , we get
- r^2 = ( 6 - r )^2 + 32
- r^2 = 36 + r^2 - 12r + 9
- 12r = 45
- r = 3.75
- So, Radius of either circle = 3.75 cm
Attachments:
Answered by
3
Answer:
Step-by-step explanation:
Attachments:
Similar questions