Math, asked by ay123961, 9 months ago

OA BC is a rhombus whose 3 vertices A, Band C lie on a circle with centre O. if the area of the rhombus is 32√3cm square. find the radius of the circle
please tell fast​

Attachments:

Answers

Answered by Anonymous
10

ANSWER✔

\large\underline\bold{GIVEN,}

\sf\dashrightarrow OABC\:is\:a\:rhombus

\sf\dashrightarrow vertices\:of\:rhombus\:A,B\:and\:C\:lies\:on\:a\:circle\:with\:centre\:"O".

\sf\dashrightarrow area\:of\:rhombus\:is\:32 \sqrt{3}

\large\underline\bold{TO\:FIND,}

\sf\bold\star radius\:of\:the\:circle

ACCORDING TO THE QUESTION,

\sf\dashrightarrow area\:of\:rhombus= \dfrac{1}{2} \times d_1 \times d_2

\sf\large\star looking\:at\:the\:given\:figure,

\sf\star we\:don't\:know\:the\:value \:of\:any\:one\:diagonal.so,

\sf\dashrightarrow two\: equilateral\:triangles\:are\:formed\:in\:a\:rhombus\:by\:joining \:the\:diagonals\:of\:the\:rhombus

\sf\dashrightarrow \:radius\:of\:circle\:can\:be\:also\:find

\sf  by\:using\:area\:of\:two\: equilateral\:triangles\:formed\:in\:the\:rhombus

we KNOW,

✯AREA OF RHOMBUS = 32√3.........EQUATION¹

LOOKING AT THE GIVEN FIGURE,

"THE DIAGONAL OF RHOMBUS MAKES TWO EQUILATERAL TRIANGLES"

\sf\large\dashrightarrow \triangle ABO and \triangle CBO

THEREFORE,

BY GIVEN EQUATION AND STATEMENT,

WE GET,

AREA OF RHOMBUS= 2× (AREA OF EQUILATERAL TRIANGLES).........EQUATION²

\sf\therefore area\:of\: equilateral\:triangle= \dfrac{\sqrt{3}}{4} \times a^2

\sf\therefore a=r

\sf\therefore area\:of\:rhombus=2 \times  \dfrac{\sqrt{3}}{4} \times r^2

NOTE:-

✯."DIAGONAL OF RHOMBUS IS EQUAL TO RADIUS OF THE CIRCLE".

✯FORMULA IN USE,

\rm{\boxed{\bf{\star \:\: 2 \times  \dfrac{\sqrt{3}}{4} \times r^2\:\:\star }}}

\large\underline\bold{SOLUTION,}

WE KNOW,

AREA OF RHOMBUS = \sf\dfrac{1}{2} \times d_1 \times d_2

✯.FROM EQUATION (1)AND (2) WE GET,

area of rhombus = 32√3cm²

\sf\implies 2 \times  \dfrac{\sqrt{3}}{4} \times r^2=32\sqrt{3}

\sf\implies 2 \times  \dfrac{\sqrt{3}}{4} \times r^2=32\sqrt{3}

\sf\implies   \dfrac{\sqrt{3}}{2} \times r^2=32\sqrt{3}

\sf\implies   \sqrt{3} \times r^2=2 \times 32\sqrt{3}

\sf\implies   \sqrt{3} \times r^2=64 \sqrt{3}

\sf\implies   \dfrac{\sqrt{3}}{\sqrt{3}} \times r^2=64

\sf\implies   \dfrac{\cancel{\sqrt{3}}}{\cancel{\sqrt{3}}} \times r^2=64

\sf\implies r^2=64

\sf\implies r= \sqrt{64}

\sf\implies r=8

\large{\boxed{\bf{ r=8cm}}}

\large\underline\bold{RADIUS\:OF\:THE\:CIRCLE\:IS\:8CM,}

____________________________

Attachments:
Answered by ItzCaptonMack
0

\huge\underline{\underline{\bold{\green{AnSwEr}}}}

\large\underline\bold{GIVEN,}

\sf\dashrightarrow OABC\:is\:a\:rhombus

\sf\dashrightarrow vertices\:of\:rhombus\:A,B\:and\:C\:lies\:on\:a\:circle\:with\:centre\:"O".

\sf\dashrightarrow area\:of\:rhombus\:is\:32 \sqrt{3}

\large\underline\bold{TO\:FIND,}

\sf\bold\star radius\:of\:the\:circle

ACCORDING TO THE QUESTION,

\sf\dashrightarrow area\:of\:rhombus= \dfrac{1}{2} \times d_1 \times d_2

\sf\large\star looking\:at\:the\:given\:figure,

\sf\star we\:don't\:know\:the\:value \:of\:any\:one\:diagonal.so,

\sf\dashrightarrow two\: equilateral\:triangles\:are\:formed\:in\:a\:rhombus\:by\:joining \:the\:diagonals\:of\:the\:rhombus

\sf\dashrightarrow \:radius\:of\:circle\:can\:be\:also\:find

\sf  by\:using\:area\:of\:two\: equilateral\:triangles\:formed\:in\:the\:rhombus

we KNOW,

✯AREA OF RHOMBUS = 32√3.........EQUATION¹

LOOKING AT THE GIVEN FIGURE,

"THE DIAGONAL OF RHOMBUS MAKES TWO EQUILATERAL TRIANGLES"

\sf\large\dashrightarrow \triangle ABO and \triangle CBO

THEREFORE,

THEREFORE,BY GIVEN EQUATION AND STATEMENT,

THEREFORE,BY GIVEN EQUATION AND STATEMENT,WE GET,

AREA OF RHOMBUS= 2× (AREA OF EQUILATERAL TRIANGLES).........EQUATION²

\sf\therefore area\:of\: equilateral\:triangle= \dfrac{\sqrt{3}}{4} \times a^2

\sf\therefore a=r

\sf\therefore area\:of\:rhombus=2 \times  \dfrac{\sqrt{3}}{4} \times r^2

NOTE:-

NOTE:-✯."DIAGONAL OF RHOMBUS IS EQUAL TO RADIUS OF THE CIRCLE".

NOTE:-✯."DIAGONAL OF RHOMBUS IS EQUAL TO RADIUS OF THE CIRCLE". ✯FORMULA IN USE,

\rm{\boxed{\bf{\star \:\: 2 \times  \dfrac{\sqrt{3}}{4} \times r^2\:\:\star }}}

\large\underline\bold{SOLUTION,}

WE KNOW,

AREA OF RHOMBUS = \sf\dfrac{1}{2} \times d_1 \times d_2

✯.FROM EQUATION (1)AND (2) WE GET,

area of rhombus = 32√3cm²

\sf\implies 2 \times  \dfrac{\sqrt{3}}{4} \times r^2=32\sqrt{3}

\sf\implies 2 \times  \dfrac{\sqrt{3}}{4} \times r^2=32\sqrt{3}

\sf\implies   \dfrac{\sqrt{3}}{2} \times r^2=32\sqrt{3}

\sf\implies   \sqrt{3} \times r^2=2 \times 32\sqrt{3}

\sf\implies   \sqrt{3} \times r^2=64 \sqrt{3}

\sf\implies   \dfrac{\sqrt{3}}{\sqrt{3}} \times r^2=64

\sf\implies   \dfrac{\cancel{\sqrt{3}}}{\cancel{\sqrt{3}}} \times r^2=64

\sf\implies r^2=64

\sf\implies r= \sqrt{64}

\sf\implies r=8

\large{\boxed{\bf{ r=8cm}}}

\large\underline\bold{RADIUS\:OF\:THE\:CIRCLE\:IS\:8CM,}

Similar questions