OA,OB,OC are three rays in order that AOB = 54º. BOC = 24° OP bisects AOC then POB is
Answers
Answered by
40
∠POB = 15° if OA,OB,OC are three rays in order that AOB = 54º. BOC = 24° OP bisects AOC
Step-by-step explanation:
OA,OB,OC are three rays
∠AOB = 54º
∠BOC = 24°
∠AOC = ∠AOB + ∠BOC
=> ∠AOC = 54º + 24º = 78º
OP bisects AOC
=> ∠AOP = ∠COP = (1/2)∠AOC
=> ∠AOP = ∠COP = (1/2) 78°
=> ∠AOP = ∠COP = 39°
∠POB = ∠AOB - ∠AOP
=> ∠POB = 54º - 39°
=> ∠POB = 15°
or ∠POB = ∠COP - ∠COB
=> ∠POB = 39° - 24° = 15°
Learn more:
IF RAY YM IS BISECTOR OF ANGLE XYZ AND RAY YN IS ...
https://brainly.in/question/12893608
Similar questions