Physics, asked by shubamsharmams7765, 7 months ago

object move with velocity 2 m/s & it's acceleration is given by 6t^2_2t+3 find velocity when time is 3s

Answers

Answered by rema011287
15

Answer:

209 m/s

Explanation:

u=2m/s

t=3s

a=6t²-2t+3

At t=3s, a= 6×3²-2×3+3 = 6×9-6+3 =69 m/s²

v=u+at = 2+69×3 = 2+207=209 m/s

Answered by Anonymous
23

Answer:

 \boxed{\mathfrak{Velocity \ at \ time \ 3s = 56 \ m/s}}

Explanation:

Function of acceleration (a) w.r.t time (t) is given as:

a = 6t² - 2t + 3

Accelration is rate of change of velocity i.e.

 \rm a =  \dfrac{dv}{dt}

So,

 \rm \implies  \frac{dv}{dt}  = 6 {t}^{2}  - 2t + 3 \\  \\  \rm \implies \int\limits^{v_{f}}_{v_i}dv =\int\limits^{t_f}_{t_i}  (6 {t}^{2}  - 2t + 3)dt

Initial velocity ( \rm v_i ) = 2 m/s

Initial time ( \rm t_i )= 0 s

Final time ( \rm t_f )= 3 s

 \rm \implies \int\limits^{v_{f}}_{2}dv =\int\limits^{3}_{0}  (6 {t}^{2}  - 2t + 3)dt \\  \\  \rm \implies v\Big|_2^{v_{f}} = 2 {t}^{3}  -  {t}^{2}  + 3t\Big|_0^{3} \\  \\ \rm \implies v_{f} - 2 = 2 {(3)}^{3}  -  {3}^{2}  + 3(3)\\  \\ \rm \implies v_{f}  - 2 = 54 - 9 + 9\\  \\ \rm \implies v_{f} = 54 + 2\\  \\ \rm \implies v_{f} = 56 \: m {s}^{ - 1}

Final velocity ( \rm  v_{f} ) = 56 m/s

Similar questions