• Obtain all other zeroes of 3x+ 6x^3 – 2x^2 - 10x – 5, if two of its zeroes are root 5/3 and root - 5/3.
Ncert (Cbse ) Class 10th, ch- 2 {ex:- 2.3 } Q no. 3.
Step by Step explanation.
Answers
Step-by-step explanation:
3x0+6x^3
Root= 5/3 = 1.666
Root= -5/3= -1.666
Two zeros root= 5/3
Step-by-step explanation:
\begin{gathered}tan(a + b) = \sqrt{3} \\ \\ = > tan(a + b) = tan60 \: \: \: \: \: \: \: (tan60 = \sqrt{3} ) \\ \\ tan \: get \: cancelled \: on \: both \: sides \\ \\ = > (a + b) = 60 - - - (1) \\ \\ given \: tan(a - b) = \frac{1}{ \sqrt{3} } \\ \\ = > tan(a - b) = tan30 \: \: \: \: \: \: (tan30 = \frac{1}{ \sqrt{3} } ) \\ \\ tan \: gets \: cancelled \: on \: both \: sides \\ \\ = > (a - b) = 30 - - - (2) \\ \\ adding \: eq(1) \: and \: eq(2) \\ \\ = > a + b = 60 \\ \: \: \: \: \: \: \: \: \: a - b = 30 \\ - - - - - - - - - - - - \\ = > 2a = 90 \\ \\ = > a = 45 \\ \\ from \: eq(1) \\ \\ 45 + b = 60 \\ \\ = > b = 15\end{gathered}
tan(a+b)=
3
=>tan(a+b)=tan60(tan60=
3
)
tangetcancelledonbothsides
=>(a+b)=60−−−(1)
giventan(a−b)=
3
1
=>tan(a−b)=tan30(tan30=
3
1
)
tangetscancelledonbothsides
=>(a−b)=30−−−(2)
addingeq(1)andeq(2)
=>a+b=60
a−b=30
−−−−−−−−−−−−
=>2a=90
=>a=45
fromeq(1)
45+b=60
=>b=15
HOPE IT HELPS !!!!