Math, asked by avinash5006, 9 months ago


• Obtain all other zeroes of 3x+ 6x^3 – 2x^2 - 10x – 5, if two of its zeroes are root 5/3 and root - 5/3.

Ncert (Cbse ) Class 10th, ch- 2 {ex:- 2.3 } Q no. 3.

Step by Step explanation.

Answers

Answered by sabigpta
1

Step-by-step explanation:

3x0+6x^3

Root= 5/3 = 1.666

Root= -5/3= -1.666

Two zeros root= 5/3

Answered by Simrankaur1025
1

Step-by-step explanation:

\begin{gathered}tan(a + b) = \sqrt{3} \\ \\ = > tan(a + b) = tan60 \: \: \: \: \: \: \: (tan60 = \sqrt{3} ) \\ \\ tan \: get \: cancelled \: on \: both \: sides \\ \\ = > (a + b) = 60 - - - (1) \\ \\ given \: tan(a - b) = \frac{1}{ \sqrt{3} } \\ \\ = > tan(a - b) = tan30 \: \: \: \: \: \: (tan30 = \frac{1}{ \sqrt{3} } ) \\ \\ tan \: gets \: cancelled \: on \: both \: sides \\ \\ = > (a - b) = 30 - - - (2) \\ \\ adding \: eq(1) \: and \: eq(2) \\ \\ = > a + b = 60 \\ \: \: \: \: \: \: \: \: \: a - b = 30 \\ - - - - - - - - - - - - \\ = > 2a = 90 \\ \\ = > a = 45 \\ \\ from \: eq(1) \\ \\ 45 + b = 60 \\ \\ = > b = 15\end{gathered}

tan(a+b)=

3

=>tan(a+b)=tan60(tan60=

3

)

tangetcancelledonbothsides

=>(a+b)=60−−−(1)

giventan(a−b)=

3

1

=>tan(a−b)=tan30(tan30=

3

1

)

tangetscancelledonbothsides

=>(a−b)=30−−−(2)

addingeq(1)andeq(2)

=>a+b=60

a−b=30

−−−−−−−−−−−−

=>2a=90

=>a=45

fromeq(1)

45+b=60

=>b=15

HOPE IT HELPS !!!!

Similar questions