Math, asked by aamir1910, 2 months ago

obtain all other zeroes of the polynomial x4 + 4x3 - 2x2 - 20x - 15​

Answers

Answered by anindyaadhikari13
12

Solution:

Given:

→ f(x) = x⁴ + 4x³ - 2x² - 20x - 15

Put x = -1, we get:

→ f(-1) = (-1)⁴ + 4 × (-1)³ - 2 × (-1)² - 20 × (-1) - 15

        = 1 - 4 - 2 + 20 - 15

        = -5 + 20 - 15

        = 20 - 20

        = 0

Therefore, by factor theorem:

→ (x + 1) is a factor of f(x).

Divide f(x) by (x - 1):

x + 1) x⁴ + 4x³ - 2x² - 20x - 15 ( x³ + 3x² - 5x - 15

        x⁴ +   x³

–––––––––––––––––––––––––

               3x³ - 2x²

               3x³ + 3x²

–––––––––––––––––––––––––

                       -5x² - 20x

                       -5x² -    5x

–––––––––––––––––––––––––

                                  -15x - 15

                                  -15x - 15

–––––––––––––––––––––––––

                                        0

Therefore:

→ f(x) = (x + 1)(x³ + 3x² - 5x - 15)

        = (x + 1){x²(x + 3) - 5(x + 3)}

        = (x + 1)(x + 3)(x² - 5)

Therefore:

→ (x + 1)(x + 3)(x² - 5) = 0

→ (x + 1) = 0 or (x + 3) = 0 or (x² - 5) = 0

When (x + 1) = 0:

→ x + 1 = 0

→ x = -1

When (x + 3) = 0:

→ x + 3 = 0

→ x = -3

When (x² - 5) = 0:

→ x² - 5 = 0

→ x² - (√5)² = 0

→ (x + √5)(x - √5) = 0

→ (x + √5) = 0 or (x - √5) = 0

→ x = √5, -√5

Therefore:

→ Zeros of f(x) are – (-1, -3, √5, -√5)   (Answer)

Answered by LaRouge
23

Answer:

An antibody, also known as an immunoglobulin, is a large, Y-shaped protein used by the immune system to identify and neutralize foreign objects such as pathogenic bacteria and viruses. The antibody recognizes a unique molecule of the pathogen, called an antigen

Similar questions