Math, asked by Yuvi86g, 1 year ago

Obtain all other zeros of a polynomial 2 x ki power 4 + 3 x cube - 15 x square minus 24 x minus 8 if two of its zeros are 2 root 2 and minus 2 root 2

Answers

Answered by DeviIQueen
3

Answer:

Step-by-step explanation:

Solve the equation x3 − 3x2 – 2x + 4 = 0

We put the numbers that are factors of 4 into the equation to see if any of them are correct.

   f(1) = 13 − 3×12 – 2×1 + 4 = 0                        1 is a solution

   f(−1) = (−1)3 − 3×(−1)2 – 2×(−1) + 4 = 2      

   f(2) = 23 − 3×22 – 2×2 + 4 = −4

   f(−2) = (−2)3 − 3×(−2)2 – 2×(−2) + 4 = −12

   f(4) = 43 − 3×42 – 2×4 + 4 = 12

   f(−4) = (−4)3 − 3×(−4)2 – 2×(−4) + 4 = −100

The only integer solution is x = 1. When we have found one solution we don’t really need to test any other numbers because we can now solve the equation by dividing by (x − 1) and trying to solve the quadratic we get from the division.

Answered by Anonymous
3

the other zeroes are -1/2 and -1

Step-by-step explanation:

given polynomial : 2x⁴+3x³-5x²-9x-3

2 of its zeroes are +√3 and -√3

let the zeroes be (x+√3)(x-√3)

hence zeroes = x²-(√3)²

=x²-3

now dividing polynomial by x²-3..

x²-3) 2x⁴+3x³-5x²-9x-3 ( 2x²+3x+1

       2x⁴         -6x²

       ⁽⁻⁾             ⁽⁺⁾

     ⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻

             3x³+ x²-9x

             3x        -9x

           ⁽⁻⁾             ⁽⁺⁾

           ⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻

                   x²-3

                   x²-3

                  ⁽⁻⁾   ⁽⁺⁾

               ⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻              

                     0  0

now factorising, 2x²+3x+1

2x²+2x+1x+1

2x(x+1)+1(x+1)

(2x+1)(x+1)=0

2x+1=0                x+1=0

2x= -1                  x= -1

x = -1/2

therefore all zeroes are -1/2 and -1, 2√2, -2√2

Similar questions