Math, asked by swetharosy21, 1 year ago

obtain all other zeros of the polynomial x to the power 4 + 4 x to the power 3 - 2 X ^ 2 - 20x- 15 if two of its zeros are root 5 and minus root 5
please let me know if you are looking for answers I will mark us brainliest plllllllllzzzzxz please answer ​

Answers

Answered by akshayshyam01010
1

Your answer is on the given attachment

Attachments:

swetharosy21: thanks for the first answer
Answered by siddhartharao77
0

Answer:

√5, -√5, -1, -3

Step-by-step explanation:

Let f(x) = x⁴ + 4x³ - 2x² - 20x - 15.

Given, √5 and -√5 are the zeroes of the polynomial.

Hence, (x + √5)(x - √5) are the zeroes of the polynomial.

⇒ x² - 5 is a factor of the polynomial.

Now, we divide the polynomial by x² - 5.

Long Division Method:

x² - 5) x⁴ + 4x³ - 2x² - 20x - 15 (x² + 4x + 3

         x⁴           - 5x²

         ----------------------------------

                 4x³  + 3x² - 20x

                 4x³            - 20x

          ------------------------------------

                            3x²           -  15

                            3x²           -  15

          -------------------------------------

                                               0

Now,

⇒ x² + 4x + 3 = 0

⇒ x² + x + 3x + 3 = 0

⇒ x(x + 1) + 3(x + 1) = 0

⇒ (x + 1)(x + 3) = 0

⇒ x = -1, -3.

Therefore, the zeroes of the polynomial are √5, -√5, -1,-3

Hope it helps!

Similar questions