Math, asked by manjotk3432, 1 month ago

Obtain all other zeros of (x4 + 4x3 - 2x2 - 20x - 15) if two of its zeros are √5 and -√5 .

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given polynomial is

\rm :\longmapsto\: {x}^{4} +  {4x}^{3} -  {2x}^{2} - 20x - 15

Let assume that

\rm :\longmapsto\:f(x) =  {x}^{4} +  {4x}^{3} -  {2x}^{2} - 20x - 15

Now, Further given that

\rm :\longmapsto\: \sqrt{5} \: and \:  -  \sqrt{5}  \: are \: zeroes \: of \: f(x)

\rm :\longmapsto\: x - \sqrt{5} \: and \:  x + \sqrt{5}  \: are \: factors \: of \: f(x)

\rm :\longmapsto\: (x - \sqrt{5}) (x + \sqrt{5})  \: is \: factor \: of \: f(x)

\rm :\longmapsto\: ( {x}^{2} -  {( \sqrt{5} )}^{2}  )  \: is \: factor \: of \: f(x)

\rm :\longmapsto\:  {x}^{2} - 5  \: is \: factor \: of \: f(x)

So, Using Long Division, we have

\begin{gathered}\begin{gathered}\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{}}}&{\underline{\sf{\: \:  \:  \: {x}^{2} + 4x + 3 \:  \: \:}}}\\ {{\sf{ {x}^{2} - 5}}}& {\sf{\: {x}^{4} +  {4x}^{3} - {2x}^{2} - 20x - 15 \:}} \\{\sf{}}&\underline{\sf{\: \:  \:  { -x}^{4} +  \:  \:  \:   \:  \:  \:  \:  \:  \: 5{x}^{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:}}\\{\sf{}}&{\sf{\:  \:  \:  \:  \:  \:  \:  \:   \:  \: {4x}^{3} +  {3x}^{2} - 20x  - 15 \:\:}}\\{\sf{}}&\underline{\sf{\:\: \:  \:  \:  \:  \:  \:  \:  \:   -  {4x}^{3} \:  \:  \:  \:  \:  \:  \:  \:  \:  + 20x \:  \:  \:  \:  \:  \:  \:  \:  \:  \:\:}}\\{\sf{}}&{\sf{\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: {3x}^{2}  \:  \:  \:  \:  \:  \:  \:   \: \:  \:  - 15\:\:}}\\{\sf{}}&\underline{\sf{\:\: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \: { - 3x}^{2} \:  \:  \:  \:  \:  \:  \:  \: \:   + 15 \:\:}}\\{\sf{}}&\underline{\sf{\: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \: \:  \:  \:   \: \: 0 \:  \:  \:  \:  \:  \:  \:  \: }}\end{array}\end{gathered}\end{gathered}\end{gathered}

So, By Euclid Division Algorithm, we have

↝ Dividend = Divisor × Quotient + Remainder

\rm :\longmapsto\: {x}^{4} +  {4x}^{3} -  {2x}^{2} - 20x - 15

\rm \:  =  \: ( {x}^{2} - 5)( {x}^{2} + 4x + 3)

\rm \:  =  \: ( {x}^{2} - 5)( {x}^{2} + x  + 3x+ 3)

\rm \:  =  \: ( {x}^{2} - 5)\bigg( x(x + 1) + 3(x + 1)\bigg)

\rm \:  =  \: ( {x}^{2} - 5)(x + 3)(x + 1)

  • So, Remaining zeroes are - 1 and - 3.

Similar questions