English, asked by sweety263, 1 year ago

obtain all the other zeroes of the polynomial p (x) = 2x4-6x3+3x2+3x-2 if two of zeroes are 1 / root 2 and -1 / root 2 ?

Answers

Answered by Courageous
12

So, polynomial P(x)= 2x^{4}-6x^{3}+3x^{2}+3x-2 and it's zeroes are 1/√2 and -1/√2. We need to find all other zeroes. Let x be the all other zeroes.

(x-1/√2)(x+1/√2)

(x²-1/2)=0

(2x²-1)=0

Hence, the factor is 2x²-1. Therefore,

                      x^{2} -3x+2

           ___________________________

2x^{2} -1     2x^{4}-6x^{3}+3x^{2}+3x-2

               2x^{4}-x^{2}

            ___________________________

                      -6x^{3}+4x^{2}+3x-2

                      -6x^{3}+3x

                     ______________________

                                   4x^{2}-2

                                   4x^{2}-2

                               _________________

                                                       x


Now, 2x^{4}-6x^{3}+3x^{2}+3x-2 = (2x^{2}-1)(x^{2}-3x+2)

On future factorizing (x^{2}-3x+2) we get,

x^{2}-2x-x+2=0

x(x-2)-1(x-2)=0

(x-2)(x-1)=0

∴ x=2 and x=1

2 and 1 are other zeroes of the polynomial.

Similar questions