Math, asked by paras2910, 1 year ago

obtain all the zeroes of polynomial 2x4-7x3-13x2+63x-45 if two of its zeroes are 1 and 3​

Answers

Answered by Anonymous
15

Answer:

here is your solution ✌️

Attachments:
Answered by gayatrikumari99sl
0

Answer:

-3 and \frac{5}{2} are the other zeroes of the given polynomial

Step-by-step explanation:

Explanation:

Given , 2x^4- 7x^3- 13x^2 + 63 x- 45 and two of its zeroes are given 1 and 3

So (x - 1 ) and (x - 3) will be the two factors of the given polynomial

Therefore ,

 (x-1)(x -3)  = x^2 -4x + 3

Step 1:

Now dividing 2x^4- 7x^3- 13x^2 + 63 x- 45 by x^2 -4x + 3

x^2 -4x + 3 )2x^4- 7x^3- 13x^2 + 63 x- 45 (  2x^2 +x - 15

                  2x^4 - 8x^3 + 6x^2

                  -    +          -                        

                          x^3 - 19 x^2 +63x -45

                         x^3 - 4x^2 + 3x

                        -     +         -                        

                                -15x^2 + 60 x-45

                              - 15x^2 + 60 x-45    

                               +       -          +                  

                               x         x         x

Step 2:

Therefore ,  other zeroes are ,

2x^2 +x - 15

2x^2 + 6x -5x -15     [By middle term splitting method ]

2x(x+ 3)-5(x+3)

⇒(x+ 3)(2x -5)

∴x+ 3= 0 and 2x - 5 = 0

⇒ x = -3 and x = \frac{5}{2}

Final answer:

Hence , others zeroes are -3 and \frac{5}{2} .

#SPJ3

Similar questions