Math, asked by dasrupali893, 1 year ago

obtain all the zeroes of the polynomial
2x4-5x3-11x2+20x+12 when 2 and -2 are two zeroes of the above polynomial.



pl.give the step..

Answers

Answered by prashilpa
23

Answer:

other two roots are 3/2 and 1.

Step-by-step explanation:

Polynomial: 2x^4 - 5x^3 -11x^2 + 20x + 12

It is given that 2 and -2 are two roots.

Hence dividing with (x - 2) and (X + 2) we get remaining easily.

Doing simple long division method.

( x - 2)  ) 2x^4 - 5x^3 -11x^2 + 20x + 12  ( 2x^3 - x^2 -13x - 6

             2x^4 - 4x^3                                           (it is (x - 2) * 2x^3 )

--------------------------------------------------

                        -x^3 - 11x^2

                        -x^3 + 2x^2                               (It is (x - 2) * -x^2)

----------------------------------------------------------

                                 -13x^2 + 20x

                                 -13x^2 + 26x

---------------------------------------------------------------------

                                              -6x + 12

                                               -6x + 12

--------------------------------------------------------------------

                                                     0

Hence (2x^4 - 5x^3 -11x^2 + 20x + 12) / ( x -2) we get 2x^3 - x^2 -13x - 6

Now (X + 2) is another root, so divide 2x^3 - x^2 -13x - 6 with X + 2

Follow same division like above, we get

(2x^3 - x^2 -13x - 6) / (x + 2)  = 2x^2 - 5x - 3

Now remaining is 2x^2 - 5x - 3

Root of above binomial equations are

5 + √(5*5 + 4*2*3)/2*2  and 5 - √(5*5 + 4*2*3)/2*2

i.e.  6/4 and 4/4

Hence other two roots are 3/2 and 1.

Answered by guptaankita5252
3

Answer:

plzz mark prashilpa as brainliest her answer is the correct answer

Similar questions