obtain all the zeroes of the polynomial
if two of its zeroes are
Answers
Given p(x) = x^4 + 4x^3 - 2x^2 - 20x - 15.
Given that \sqrt{5}, -\sqrt{5}
5
,−
5
are the zeroes.
Then,
(x + \sqrt{5})(x - \sqrt{5})(x+
5
)(x−
5
) is also a factor.
= > x^2 - (\sqrt{5})^2=>x
2
−(
5
)
2
=> x^2 - 5=>x
2
−5
------------------------------------------------------------------------------------------------------------
Now,
Divide the given polynomial by x^2 - 5.
x^2 - 5) x^4 + 4x^3 - 2x^2 - 20x - 15 ( x^2 + 4x + 3
x^4 - 5x^2
--------------------------------------------
4x^3 + 3x^2 - 20x - 15
4x^3 - 20x
----------------------------------------------
3x^2 - 15
3x^2 - 15
------------------------------------------------
0
---------------------------------------------------
Now,
We factorize x^2 + 4x + 3
= > x^2 + x + 3x + 3
= > x(x + 1) + 3(x + 1)
= > (x + 1)(x + 3)
= > (x + 1)(x + 3) = 0
= > x = -1,-3 is a zero of p(x).