Obtain all zero of the polynomial f( x) = X ^4 - 3 x^3 -x^2+ 9 x - 6 if two of its zeros are -√3 and √3
Answers
Answer:
√3, - √3 , 1 and 2
Step-by-step explanation:
Given :
√3, - √3 are the zeroes of x³ - x² + 9x - 6
Step 1 : Form a quadratic polynomial whose zero are √3 and - √3
If α, β are zeroes,
Quadratic polynomial = ( x - α )( x - β )
= ( x - √3 ){ x - ( - √3 ) }
= ( x - √3 )( x + √3 )
= x² - ( √3 )²
= x² - 3
Hence, x² - 3 is the is a factor of f( x )
Step 2 : So, Divide f( x ) by ( x² - 3 )
x² - 3 ) x^4 - 3x³ - x² + 9x - 6 ( x² - 3x + 2
*******+ x^4 + 0x³ - 3x²
*******(-)*****(-)*****(+)
_____________________
**************-3x³ + 2x² + 9x
**************-3x³ + 0x² + 9x
*************(+)***********(-)
_______________________
******************** 2x² - 6
******************** + 2x² - 6
*********************(-)****(+)
______________________________
***********************0
______________________________
So f( x ) = ( x² - 3 )( x² - 3x + 2 )
Hence the other zeroes of the polynomial would be the zeroes of x² - 3x + 2
Step 3 : Finding the zeroes of x² - 3x + 2
=> x² - 3x + 2 = 0
=> x² - 2x - x + 2 = 0
=> x( x - 2 ) - 1( x - 2 ) = 0
=> ( x - 1 )( x - 2 ) = 0
=> x - 1 = 0 or x - 2 = 0
=> x = 1 or x = 2
Therefore √3, - √3, 1 and 2 are all the zeroes of the given polynomial.
Answer:
- Polynomial :
- Zeroes : and
If and are zeroes of the Polynomial then, Polynomial will be Divisible by and , and so to there Products.
⇢
⇢
⇢
- (x² - 3) will completely Divide Polynomial. So by Division.
- Remainder Obtained will be other two zeroes of the Polynomial.
x² – 3x + 2 = 0
x² – (2 + 1)x + 2 = 0
x² – 2x – x + 2 = 0
x(x – 2) – 1(x – 2) = 0
(x – 2)(x – 1) = 0
x = 2⠀or,⠀x = 1
⠀
Hence, All four Zeroes of the Given Polynomial are - √3, √3, 2 and 1.