Math, asked by bhaveshpatil52, 2 months ago

Obtain all zeroes of 3x^4+6x^3-2x^2-10x-5, if two of its zeroes are root 5/3 and -root 5/3

ANY SPAM WILL BE REPORTED AND DELETED ​

Answers

Answered by mathdude500
9

\large\underline{\sf{Solution-}}

Let assume that

\rm :\longmapsto\:p(x) =  {3x}^{4} +  {6x}^{3} - {2x}^{2} - 10x - 5

Given that

\rm :\longmapsto\: -  \sqrt{\dfrac{5}{3} }  \: and \:  \sqrt{\dfrac{5}{3} }  \: are \: zeroes \: of \: p(x)

\rm :\longmapsto\:x -  \sqrt{\dfrac{5}{3} }  \: and \:  x + \sqrt{\dfrac{5}{3} }  \: are \: factors \: of \: p(x)

\rm :\longmapsto\: \bigg(x -  \sqrt \dfrac{5}{3}  \bigg) \bigg(x +  \sqrt \dfrac{5}{3}  \bigg) \: is \: factor \: of \: p(x)

\rm :\longmapsto\: \bigg( {x}^{2} -  \dfrac{5}{3}  \bigg) \: is \: factor \: of \: p(x)

\rm :\longmapsto\: \bigg(  \dfrac{3 {x}^{2}  - 5}{3}  \bigg) \: is \: factor \: of \: p(x)

\rm :\longmapsto\:3 {x}^{2}  - 5 \: is \: factor \: of \: p(x)

Now,

Using Long Division, we have

\begin{gathered}\begin{gathered}\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{}}}&{\underline{\sf{\: \:  \:  \: {x}^{2} + 2x + 1 \:  \: \:}}}\\ {{\sf{ {3x}^{2} - 5}}}& {\sf{\: {3x}^{4} +  {6x}^{3} - {2x}^{2} - 10x - 5 \:}} \\{\sf{}}&\underline{\sf{\: \:  \:  { - 3x}^{4} +  \:  \:  \:   \:  \:  \:  \:  \:  \: 5{x}^{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:}}\\{\sf{}}&{\sf{\:  \:  \:  \:  \:  \:  \:  \:   \:  \: {6x}^{3} +  {3x}^{2} - 10x  - 5 \:\:}}\\{\sf{}}&\underline{\sf{\:\: \:  \:  \:  \:  \:  \:  \:  \:   -  {6x}^{3} \:  \:  \:  \:  \:  \:  \:  \:  \:  + 10x \:  \:  \:  \:  \:  \:  \:  \:  \:  \:\:}}\\{\sf{}}&{\sf{\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: {3x}^{2}  - 5\:\:}}\\{\sf{}}&\underline{\sf{\:\: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  { - 3x}^{2} +  5 \:\:}}\\{\sf{}}&\underline{\sf{\: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \: \:  \:  \:   \: \: 0 \:  \:  \:  \:  \:  \:  \:  \: }}\end{array}\end{gathered}\end{gathered}\end{gathered}

Now, we know that,

By Euclid Division Algorithm,

Dividend = Divisor × Quotient + Remainder

So,

\rm :\longmapsto\:{3x}^{4} +  {6x}^{3} - {2x}^{2} - 10x - 5

\rm \:  =  \:  \:( {3x}^{2} - 5)( {x}^{2}  + 2x + 1)

\rm \:  =  \:  \:( {3x}^{2} - 5)( {x}^{2}  + x + x + 1)

\rm \:  =  \:  \:( {3x}^{2} - 5) \bigg(x(x + 1) +1( x + 1) \bigg)

\rm \:  =  \:  \:( {3x}^{2} - 5) (x + 1)(x + 1)

Hence,

The zeroes of

\rm :\longmapsto\:p(x) =  {3x}^{4} +  {6x}^{3} - {2x}^{2} - 10x - 5

is

\red{ \boxed{ \rm{ \:  -  \sqrt{\dfrac{5}{3} },  \: \:  \sqrt{\dfrac{5}{3} },  \: \:  - 1, \:  \:  - 1}}}

Similar questions