Math, asked by tanishbhavsar2310, 3 months ago

Obtain all zeroes of polynomial f{x} = 3x4+6x3-2x2-10x-5. If two of its zeroes are+-underoot 5/3

Answers

Answered by jonahpreethammyla
3

Answer:

the zeros are: - √ 5/3 & √t 5/3 & -1

Step-by-step explanation:

given polynomial p(x) = 3x^4 + 6x³ - 2x² - 10x -5

given zeros are;

√5/3 and -√5/3

the factors are:

(x + √5/3) ------------------------ (1)

(x - √5/3) ------------------------- (2)

multiplying 1 and 2

x²- 5/3 --------------------------------(3)

dividing p(x) by (3)

x²-5/3   ) 3x^4 + 6x³ - 2x² - 10x - 5 ( 3x² + 6x +3

              3x^4 + 0    - 5x²

             ------------------------------------

             0        + 6x³ + 3x² - 10x

                          6x³   +0    - 10x

             --------------------------------------

                           0    + 3x² - 5

                                    3x² - 5

             --------------------------------------

                                    0      0

Quotient is : 3x² + 6x + 3

factorizing the quotient

                3x² + 6x + 3

                3x² + 3x + 3x + 3

                3x ( x + 3 ) + 3 ( x + 1 )

                 ( 3x + 3 ) ( x + 1 )

x = -1

the zeros are  √ 5/3 & √t 5/3 & -1

-----------------------------------------B Y E ! -------------------------------------

Similar questions