Math, asked by NainaMehra, 1 year ago

Obtain all zeroes of
x {}^{4}  + 3x {}^{3}  - 2x {}^{2}  - 20x - 15.
If two zeroes are
 \sqrt{5}  \:  \: and \:  \:  -   \sqrt{5} .

Answers

Answered by Nishita0603
2
hope this helps you
regards nishita
Attachments:
Answered by siddhartharao77
7

Given p(x) = x^4 + 4x^3 - 2x^2 - 20x - 15.

Given that \sqrt{5}, -\sqrt{5} are the zeroes.

Then,

(x + \sqrt{5})(x - \sqrt{5}) is also a factor.

= > x^2 - (\sqrt{5})^2

=> x^2 - 5

------------------------------------------------------------------------------------------------------------

Now,

Divide the given polynomial by x^2 - 5.


x^2 - 5) x^4 + 4x^3 - 2x^2 - 20x - 15  ( x^2 + 4x + 3

            x^4             - 5x^2

           --------------------------------------------

                      4x^3  +  3x^2 - 20x - 15

                      4x^3               - 20x

          ----------------------------------------------

                                    3x^2          -  15

                                    3x^2           -   15

         ------------------------------------------------

                                                0

         ---------------------------------------------------


Now,

We factorize x^2 + 4x + 3

= > x^2 + x + 3x + 3

= > x(x + 1) + 3(x + 1)

= > (x + 1)(x + 3)

= > (x + 1)(x + 3) = 0

= > x = -1,-3 is a zero of p(x).


Therefore, the zeroes of p(x) are:

=> \boxed{\sqrt{5}, -\sqrt{5}, -1,-3}


Hope this helps!

Similar questions