Math, asked by dheerajpahadiya, 1 year ago

obtain all zeros of the polynomial 2x4-11x3+7x2+13x-7 , it begins given that the two of its zeroes are 3+√2 and 3-√2.

Answers

Answered by Anonymous
185
Hello, Dear user .

Hope this solution will be helpful for you ☺☺
__________________________________

The given polynomial is f(x) = 2x^4 - 11x^3 + 7x^2 + 13x - 7

since , (3+√3) and (3-√2) is the zeroes of f(x)
it is follows that x - 3+√3 and x - 3- √2 are the factor of f ( x).

consequatly \: = (x - 3 + \sqrt{3})(x + 3 - \sqrt{2} ) \\ = {x}^{2} - 6x + 7 \: \: is \: a \: \: factor \: \: of \: \: p(x)

Dividing p(x) by x^2 - 6x +7
we , get remainder is 0

=> f (x) =0
=> (x^2 - 6x + 7)(2x^2 + x - 1)
=> (x + 3 + √2)(x + 3 - √2)(2x-1)(2x+1)=0
=>x = -3 -√2. , x = -3+√2 or x =1/2 or x = -1

HENCE , the zeroes of the given polynomial are ( -3-√2) , (-3+√2) , 1/2 and -1
__________________________________

☺☺☺
Attachments:
Answered by CHRIS14
59

Sol:

If  α and β are zeroes of the polynomial then x2 -(α+ β)x + αβ .

α = (3+√2) and β =  (3 - √2).

α+ β = 6 and  αβ = 7.

∴  x2 - 6x + 7.

Given polynomial 2x4-11x3+ 7x2 + 13x - 7.

                                x2 - 6x + 7 ) 2x4-11x3+ 7x2 + 13x - 7 ( 2x2 + x -1

                                                   2x4-12x3+14x2  (substract)

                                                 -----------------------------

                                                           x3 - 7x2 + 13x

                                                           x3-  6x2  + 7x   (substract)

                                                          --------------------------------------

                                                                - x2 + 6x - 7

                                                                - x2 + 6x - 7  (substract)

                                                               -----------------------------

                                                                            0

∴ The Quotient is 2x2 + x -1

                        = 2x2 + 2x - x  -1

                        = 2x(x + 1)-1( x + 1)

                       = ( 2x -1)( x +1).

∴ x = 1/2 , -1 are the other zeros of the polynomial.

2)  

Using remainder theorem f(x) = g(x) (2x-1) + (x+3)

4x3-8x2 + 8x + 1 = g(x) (2x-1) + (x+3)

4x3-8x2 + 7x - 2  = g(x) (2x-1).

g(x) = (4x3-8x2 + 7x - 2) / (2x -1).

             2x -1 ) 4x3-8x2 + 7x - 2 ( 2x2 - 3x + 2

                       4x3-2x2   (substract)

                        ---------------------------------

                             - 6x2 + 7x

                             - 6x2 + 3x   (substract)

                        ---------------------------------

                                       4x - 2

                                       4x - 2  (substract)

                        ---------------------------------

                                          0

∴ g(x) = 2x2 - 3x + 2.

Similar questions