Math, asked by khangazala1806, 4 months ago

Obtain an arithmetic progression, where first term is - 3
& the common difference is 4.​

Answers

Answered by mathdude500
2

\begin{gathered}\begin{gathered}\bf \: Given \:  - \begin{cases} &\sf{An  \: AP \:  with  \: first \: term \:  =  \:  - 3 } \\ &\sf{common \: difference \:  =  \: 4} \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf \: To \: Find \:  -  \begin{cases} &\sf{An \:  AP  \: series}  \end{cases}\end{gathered}\end{gathered}

Solution :-

Given

  • First term of AP, a = - 3

  • Common Difference of AP, d = 4

We know

Second term of series is

 \rm :  \implies \:a_2 \:  =  \: a \:  +  \: d

 \rm :  \implies \:a_2 \:  =  \:  -  \: 3 \:  +  \: 4

 \rm :  \implies \boxed{ \pink{  \rm\:a_2 \:  =  \: 1}}

Third term of series is

 \rm :  \implies \:a_3  \:  =  \: a \:  +  \: 2d

 \rm :  \implies \:a_3 \:  =  \:  -  \: 3 \:  + 2 \times 4

 \rm :  \implies \:a_3 =  - 3 + 8

 \rm :  \implies \:\boxed{ \pink{  \rm\:a_3 \:  =  \: 5}}

Fourth term of series is

 \rm :  \implies \:a_4 \:  = a \:  +  \: 3d

 \rm :  \implies \:a_4 \:  =  - 3 + 4 \times 3

 \rm :  \implies \:a_4 \:  =  - 3 + 12

 \rm :  \implies \:\boxed{ \pink{  \rm\:a_4 \:  =  \: 9}}

So, required AP series is

\boxed{ \pink{  \rm\: -   \: 3, \:1, \: 5, \: 9,.. }}

Similar questions