Physics, asked by pranjalgiri16, 6 months ago

Obtain an expression for electric field intensity due to a uniformly charged sphere.​

Answers

Answered by nirman95
11

Electrostatic Field Intensity due to a spherical shell.

  • Let's assume that a spherical shell has charge q on its surface and radius R

1. Now, for a point r greater than the radius of sphere (i.e. r > R)

  • Applying GAUSS' LAW:

 \displaystyle \:  \oint \: E \times ds =  \dfrac{q_{enclosed} }{  \epsilon_{0}}

 \implies \displaystyle \:E  \oint  ds =  \dfrac{q }{  \epsilon_{0}}

 \implies \displaystyle \:E  (4\pi {r}^{2} )=  \dfrac{q }{  \epsilon_{0}}

 \implies \displaystyle \:E =  \dfrac{q }{ 4 \epsilon_{0}\pi {r}^{2} }

2. For a point on surface of sphere (r = R):

 \displaystyle \:  \oint \: E \times ds =  \dfrac{q_{enclosed} }{  \epsilon_{0}}

 \implies \displaystyle \:E  \oint  ds =  \dfrac{q }{  \epsilon_{0}}

 \implies \displaystyle \:E  (4\pi {R}^{2} )=  \dfrac{q }{  \epsilon_{0}}

 \implies \displaystyle \:E =  \dfrac{q }{ 4 \epsilon_{0}\pi {R}^{2} }

3. For a point inside sphere (when r < R):

  • In this case, no charge is enclosed as all charge is in surface.

 \displaystyle \:  \oint \: E \times ds =  \dfrac{q_{enclosed} }{  \epsilon_{0}}

 \implies \displaystyle \:  \oint \: E \times ds =  \dfrac{0}{  \epsilon_{0}}

 \implies \displaystyle  E  =  0

Hope It Helps.

Similar questions