Physics, asked by longshinlongkumer, 10 months ago

Obtain an expression for the electric field due to an electric dipole at a point on the line passing through the centre of the dipole and perpendicular to the dipole axis

Answers

Answered by nirman95
4

Field Intensity on Equatorial position of dipole:

 \rm E_{net}= 2E \cos( \theta)

  • This is because the sine components will be cancelled.

 \rm  \implies E_{net}= 2 \times  \dfrac{kq}{ {d}^{2} }  \times   \dfrac{l}{d}

 \rm  \implies E_{net}= 2 \times  \dfrac{kq}{ {( \sqrt{ {r}^{2} +  {l}^{2}  } )}^{2} }  \times   \dfrac{l}{ \sqrt{ {r}^{2} +  {l}^{2} } }

 \rm  \implies E_{net}= 2 \times  \dfrac{kq}{ {r}^{2} +  {l}^{2}  }  \times   \dfrac{l}{ \sqrt{ {r}^{2} +  {l}^{2} } }

 \rm  \implies E_{net}=  \dfrac{2kql}{ {({r}^{2} +  {l}^{2})}^{ \frac{3}{2} }  }

 \rm  \implies E_{net}=  \dfrac{kP}{ {({r}^{2} +  {l}^{2})}^{ \frac{3}{2} }  }

  • 'P' = 2ql .

When r >>> l , we can say:

 \rm  \implies E_{net}=  \dfrac{kP}{  {r}^{3}  }

Hope It Helps !

Attachments:
Similar questions