Math, asked by mrunalbagal218, 8 months ago

obtain derivative of the following function
x^4+cosx-√5

Answers

Answered by SampannSingh
1

Answer:

Hey, the answer is in above pic .

Attachments:
Answered by Anonymous
3

SolutioN :

Let,  \sf{y\ =\ x^4\ +\ \cos\ x\ -\ \sqrt{5}} \\ \\ \mathfrak{\: \: \: \: \: \: \: \: \: \dag\ Differentiate\ \sf{y} \ wrt.\ \sf{x}} \\ \\ \\ \\ \implies \sf{\dfrac{dy}{dx}\ =\ \dfrac{d(x^4\ +\ \cos\ x\ -\ \sqrt{5})}{dx}} \\ \\ \implies \sf{\dfrac{dy}{dx}\ =\ \dfrac{d(x^4)}{dx}\ +\ \dfrac{d(\cos\ x)}{dx}\ -\ \dfrac{(5^{\frac{1}{2}})}{dx}} \\ \\ \implies \sf{\dfrac{dy}{dx}\ =\ 4x^3\ +\ (- \sin\ x)\ -\ \frac{1}{2} 5^{\frac{-1}{2}}} \\ \\ \implies \sf{\dfrac{dy}{dx}\ =\ 4x^3\ -\ sin\ x\ -\ \frac{1}{2 \sqrt{5}}}

Similar questions