Obtain the complementary function and particular integral of (6M) (D²+4) y=e^3+sin2x+cos2x
Answers
Answered by
0
Answer:
given eqn, (D²+4)=e³+sin2x+cos2x
here,f(D) =D²+4
A.F,f(m)=0
m²+4=0
m²=-4
m²=-2²
m=2i,-2i
so,yc (complimentary fn)=c1cos2x+c2sin2x
now yp=1/f(D) .Q
yp= 1
___ (e^3x+sin2x+cos2x)
D²+4
Attachments:
Similar questions