Math, asked by rajkumardpaal232, 1 month ago

obtain the derivative of the function y=X2+1 by first principal (definition).​

Answers

Answered by abhinavkr01
0

By First Principal,

 {f}^{ l} x \:  = lim \: h→0 \:  \frac{f(x + h) - f(x)}{h}  \\  = lim \: h→0 \:  \frac{ {((x + h)}^{2}  + 1) - ( {x}^{2}  + 1)}{h} \\ =  lim \: h→0 \:  \frac{( {x}^{2} +  {h}^{2}  + 2xh + 1 -  {x}^{2}  - 1) }{h}  \\  = lim \: h→0 \:  \frac{( {h}^{2} + 2xh) }{h}  \\  = lim \: h→0 \: (h + 2x) \\  = (0 + 2x) = 2x

Using formulas,

 \frac{dy}{dx}  =  \frac{d( {x}^{2} + 1) }{dx}  =  \frac{d( {x)}^{2} }{dx} +  \frac{d(1)}{dx}   \\  = 2 {x}^{2 - 1}  + 0  = 2x

Hope It Helps :)

Similar questions