Math, asked by PragyaTbia, 1 year ago

Obtain the differential equation by eliminating the arbitrary constants from the given equation, y=c^{2}+\frac{c}{x}

Answers

Answered by hukam0685
0
To obtain the differential equation by eliminating the arbitrary constants from the given equation, y=c^{2}+\frac{c}{x}

y =  {c}^{2}  +  \frac{c}{x} ...eq1 \\  \\  \frac{dy}{dx}  = 0 + ( \frac{ - c}{ {x}^{2} } ) \\  \\ \frac{dy}{dx}  =  ( \frac{ - c}{ {x}^{2} } )...eq2 \\  \\  \frac{ {d}^{2}y }{ {dx}^{2} }  =  - c( \frac{ - 2x}{ {x}^{4} } ) \\  \\ \frac{ {d}^{2}y }{ {dx}^{2} }  =   ( \frac{  2c}{ {x}^{3} } )...eq3 \\  \\  = ( -  \frac{c}{ {x}^{2} } )( \frac{2}{x} ) \\  \\  \frac{ {d}^{2}y }{ {dx}^{2} }=  \frac{2}{x}  \frac{dy}{dx}  \\  \\ \frac{ {d}^{2}y }{ {dx}^{2} } -  \frac{2}{x}  \frac{dy}{dx} = 0 \\  \\ x\frac{ {d}^{2}y }{ {dx}^{2} } -2  \frac{dy}{dx} = 0 \\  \\
is the required differential equation.
Similar questions