Physics, asked by aryamathew2519, 1 year ago

Obtain the formula for electric field due to a long thin wire of uniform linear charge density without using gauss law.

Answers

Answered by abhi178
115
Let a infinite long thin wire of surface charge density \lambda is placed vertically as shown in figure. consider a point P, a unit away from the long charged wire. electric field due to element dy ,
dE_p=\frac{Q}{4\pi\epsilon_0r^2} 
we know, charge = lines charge density × length 
So, Q=\lambda dy
r² = y² + a² [ from Pythagoras theorem, ]
\implies dE_P=\frac{\lambda dy}{4\pi\epsilon_0(y^2 + a^2)}
E_p=\int\limits^{\infty}_{-\infty}{dE_p}

here you can see that vertical components cancel out and horizontal component are added due to symmetry. 
\implies E_P=\int\limits^{\infty}_{0}{2dE_pcos\theta}

\implies E_p=\int\limits^{\infty}_{0}{\frac{\lambda dy}{4\pi\epsilon_0(y^2+a^2)}cos\theta}

=\frac{2}{4\pi\epsilon_0}\int\limits^{\infty}_0{\frac{\lambda dy}{y^2+a^2}}\times\frac{y}{\sqrt{y^2+a^2}} 

=\frac{1}{2\pi\epsilon_0}\int\limits^{\infty}_0{\frac{\lambda ydy}{(y^2+a^2)^{3/2}}}

take y² + a² = x 
differentiate with respect to x
2ydy = dx 
and taking proper limits
I mean, take upper limit y = ∞² + a² = ∞
and lower limit , y = 0² + a² = a²

E_p=\frac{\lambda}{4\pi\epsilon_0}\int\limits^{\infty}_{a^2}{\frac{dx}{x^{3/2}}}

\implies\left[\begin{array}{c}\frac{-2\lambda}{4\pi\epsilon_0}\frac{1}{\sqrt{x}}\end{array}\right]^{\infty}_{a^2}= \frac{\lambda}{2\pi\epsilon_0 a}

hence, E=\frac{\lambda}{2\pi\epsilon_0 a}
Attachments:
Answered by hindavishivani
39

Answer:

The simplest way to do this derivation without hactic differentiation

Explanation:

May it help you

Attachments:
Similar questions
Science, 8 months ago