Obtain the formula for electric field due to a long thin wire of uniform linear charge density without using gauss law.
Answers
Answered by
115
Let a infinite long thin wire of surface charge density
is placed vertically as shown in figure. consider a point P, a unit away from the long charged wire. electric field due to element dy ,
we know, charge = lines charge density × length
So,![Q=\lambda dy Q=\lambda dy](https://tex.z-dn.net/?f=Q%3D%5Clambda+dy)
r² = y² + a² [ from Pythagoras theorem, ]
![\implies dE_P=\frac{\lambda dy}{4\pi\epsilon_0(y^2 + a^2)} \implies dE_P=\frac{\lambda dy}{4\pi\epsilon_0(y^2 + a^2)}](https://tex.z-dn.net/?f=%5Cimplies+dE_P%3D%5Cfrac%7B%5Clambda+dy%7D%7B4%5Cpi%5Cepsilon_0%28y%5E2+%2B+a%5E2%29%7D)
![E_p=\int\limits^{\infty}_{-\infty}{dE_p} E_p=\int\limits^{\infty}_{-\infty}{dE_p}](https://tex.z-dn.net/?f=E_p%3D%5Cint%5Climits%5E%7B%5Cinfty%7D_%7B-%5Cinfty%7D%7BdE_p%7D)
here you can see that vertical components cancel out and horizontal component are added due to symmetry.
![\implies E_P=\int\limits^{\infty}_{0}{2dE_pcos\theta} \implies E_P=\int\limits^{\infty}_{0}{2dE_pcos\theta}](https://tex.z-dn.net/?f=%5Cimplies+E_P%3D%5Cint%5Climits%5E%7B%5Cinfty%7D_%7B0%7D%7B2dE_pcos%5Ctheta%7D)
![\implies E_p=\int\limits^{\infty}_{0}{\frac{\lambda dy}{4\pi\epsilon_0(y^2+a^2)}cos\theta} \implies E_p=\int\limits^{\infty}_{0}{\frac{\lambda dy}{4\pi\epsilon_0(y^2+a^2)}cos\theta}](https://tex.z-dn.net/?f=%5Cimplies+E_p%3D%5Cint%5Climits%5E%7B%5Cinfty%7D_%7B0%7D%7B%5Cfrac%7B%5Clambda+dy%7D%7B4%5Cpi%5Cepsilon_0%28y%5E2%2Ba%5E2%29%7Dcos%5Ctheta%7D)
![=\frac{1}{2\pi\epsilon_0}\int\limits^{\infty}_0{\frac{\lambda ydy}{(y^2+a^2)^{3/2}}} =\frac{1}{2\pi\epsilon_0}\int\limits^{\infty}_0{\frac{\lambda ydy}{(y^2+a^2)^{3/2}}}](https://tex.z-dn.net/?f=%3D%5Cfrac%7B1%7D%7B2%5Cpi%5Cepsilon_0%7D%5Cint%5Climits%5E%7B%5Cinfty%7D_0%7B%5Cfrac%7B%5Clambda+ydy%7D%7B%28y%5E2%2Ba%5E2%29%5E%7B3%2F2%7D%7D%7D)
take y² + a² = x
differentiate with respect to x
2ydy = dx
and taking proper limits
I mean, take upper limit y = ∞² + a² = ∞
and lower limit , y = 0² + a² = a²
![E_p=\frac{\lambda}{4\pi\epsilon_0}\int\limits^{\infty}_{a^2}{\frac{dx}{x^{3/2}}} E_p=\frac{\lambda}{4\pi\epsilon_0}\int\limits^{\infty}_{a^2}{\frac{dx}{x^{3/2}}}](https://tex.z-dn.net/?f=E_p%3D%5Cfrac%7B%5Clambda%7D%7B4%5Cpi%5Cepsilon_0%7D%5Cint%5Climits%5E%7B%5Cinfty%7D_%7Ba%5E2%7D%7B%5Cfrac%7Bdx%7D%7Bx%5E%7B3%2F2%7D%7D%7D)
![\implies\left[\begin{array}{c}\frac{-2\lambda}{4\pi\epsilon_0}\frac{1}{\sqrt{x}}\end{array}\right]^{\infty}_{a^2}= \frac{\lambda}{2\pi\epsilon_0 a} \implies\left[\begin{array}{c}\frac{-2\lambda}{4\pi\epsilon_0}\frac{1}{\sqrt{x}}\end{array}\right]^{\infty}_{a^2}= \frac{\lambda}{2\pi\epsilon_0 a}](https://tex.z-dn.net/?f=%5Cimplies%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D%5Cfrac%7B-2%5Clambda%7D%7B4%5Cpi%5Cepsilon_0%7D%5Cfrac%7B1%7D%7B%5Csqrt%7Bx%7D%7D%5Cend%7Barray%7D%5Cright%5D%5E%7B%5Cinfty%7D_%7Ba%5E2%7D%3D+%5Cfrac%7B%5Clambda%7D%7B2%5Cpi%5Cepsilon_0+a%7D)
hence,
we know, charge = lines charge density × length
So,
r² = y² + a² [ from Pythagoras theorem, ]
here you can see that vertical components cancel out and horizontal component are added due to symmetry.
take y² + a² = x
differentiate with respect to x
2ydy = dx
and taking proper limits
I mean, take upper limit y = ∞² + a² = ∞
and lower limit , y = 0² + a² = a²
hence,
Attachments:
![](https://hi-static.z-dn.net/files/dd2/0fcd150f6c7992fedda085a2f4dded62.jpg)
Answered by
39
Answer:
The simplest way to do this derivation without hactic differentiation
Explanation:
May it help you
Attachments:
![](https://hi-static.z-dn.net/files/d13/71a1b1a6c55d233ffba1a169893c6995.jpg)
![](https://hi-static.z-dn.net/files/d56/6905fa70ad2936512dc8a3d09d554f15.jpg)
Similar questions