Physics, asked by 12345jaichhikara, 1 year ago

obtain the magnitude of 2A - 3B vector If A vector = i cap + j cap - 2k cap and B vector = 2i cap - j cap + k cap

Answers

Answered by nirman95
5

Given:

A =  \hat{i} +  \hat{j} - 2 \hat{k}

B = 2 \hat{i} -  \hat{j} +  \hat{k}

To find:

Magnitude of 2A - 3B.

Calculation:

First let's calculate the individual vectors.

 \therefore \: 2A = 2  \: \bigg \{ \hat{i} +  \hat{j} - 2 \hat{k} \bigg \}

 =  >  \: 2A = 2\hat{i} +  2\hat{j} - 4 \hat{k}

Again for vector B:

 \therefore \: 3B = 3  \: \bigg \{2 \hat{i} -  \hat{j} +  \hat{k} \bigg \}

 =  >  \: 3B = 6 \hat{i} -  3\hat{j} +  3\hat{k}

Now, net vector:

 =  >  \: 2A  + 3B= (2\hat{i} +  2\hat{j} - 4 \hat{k})   + (6 \hat{i} -  3\hat{j} +  3\hat{k}  )

 =  >  \: 2A  + 3B= 8\hat{i}  - \hat{j} - \hat{k}

Magnitude of net vector:

 =  >  \: | 2A  + 3B| = \sqrt{ {8}^{2}  +  {( - 1)}^{2} +  {( - 1)}^{2}  }

 =  >  \: | 2A  + 3B| = \sqrt{ 64+  1 +  1 }

 =  >  \: | 2A  + 3B| = \sqrt{ 66 }

So, final answer is :

 \boxed{ \red{ \bold{  \: | 2A  + 3B| = \sqrt{ 66 } }}}

Answered by AditiHegde
1

Given:

A vector = i cap + j cap - 2k cap and B vector = 2i cap - j cap + k cap

To find:

obtain the magnitude of 2A - 3B vector If A vector = i cap + j cap - 2k cap and B vector = 2i cap - j cap + k cap

Solution:

From given, we have,

A vector = i cap + j cap - 2k cap and B vector = 2i cap - j cap + k cap

Now consider,

2A = 2 × (i cap + j cap - 2k cap ) = 2i cap + 2j cap - 4k cap

Similarly, now consider,

3B = 3 × (2i cap - j cap + k cap ) = 6i cap - 3j cap + 3k cap

Now we have,

2A - 3B = [2i cap + 2j cap - 4k cap ] - [6i cap - 3j cap + 3k cap]

2A - 3B = (2i cap - 6i cap) + (2j cap + 3j cap) + (- 4k cap - 3k cap)

2A - 3B = - 4i cap + 5j cap - 7k cap

\therefore 2A-3B=-4 \hat {i} + 5   \hat {j}-7 \hat {k}

Therefore, 2A - 3B = - 4i cap + 5j cap - 7k cap

Magnitude |2A - 3B| = √[(-4)² + (5)² + (-7)²] = √[16 + 25 + 49] = √90 = 3√10

Therefore, the magnitude of 2A - 3B is 3√10

Similar questions