obtain the magnitude of 2A - 3B vector If A vector = i cap + j cap - 2k cap and B vector = 2i cap - j cap + k cap
Answers
Given:
To find:
Magnitude of 2A - 3B.
Calculation:
First let's calculate the individual vectors.
Again for vector B:
Now, net vector:
Magnitude of net vector:
So, final answer is :
Given:
A vector = i cap + j cap - 2k cap and B vector = 2i cap - j cap + k cap
To find:
obtain the magnitude of 2A - 3B vector If A vector = i cap + j cap - 2k cap and B vector = 2i cap - j cap + k cap
Solution:
From given, we have,
A vector = i cap + j cap - 2k cap and B vector = 2i cap - j cap + k cap
Now consider,
2A = 2 × (i cap + j cap - 2k cap ) = 2i cap + 2j cap - 4k cap
Similarly, now consider,
3B = 3 × (2i cap - j cap + k cap ) = 6i cap - 3j cap + 3k cap
Now we have,
2A - 3B = [2i cap + 2j cap - 4k cap ] - [6i cap - 3j cap + 3k cap]
2A - 3B = (2i cap - 6i cap) + (2j cap + 3j cap) + (- 4k cap - 3k cap)
2A - 3B = - 4i cap + 5j cap - 7k cap
Therefore, 2A - 3B = - 4i cap + 5j cap - 7k cap
Magnitude |2A - 3B| = √[(-4)² + (5)² + (-7)²] = √[16 + 25 + 49] = √90 = 3√10
Therefore, the magnitude of 2A - 3B is 3√10