Obtain the maximum kinetic energy of β-particles, and the radiation frequencies of γ decays in the decay scheme shown in Fig. 13.6. You are given that m(¹⁹⁸Au) =197.968233 u m¹⁹⁸Hg) =197.966760 u
Attachments:
Answers
Answered by
6
Refer to the attachment
Frequency of γ₁ = (E₂ - E₁) /h
= (1.088) × (1.6 × 10⁻¹³) / 6.626 × ⁻³⁴
= 2.63 × 10²⁰ Hz
Frequency of γ₂ = (0.412 -0 )× (1.6 × 10⁻¹³) / 6.626 × ⁻³⁴
= 9.96 × 10²⁰ Hz
Frequency of γ₃ = (1.088- 0.412) × (1.6 × 10⁻¹³) / 6.626 × ⁻³⁴
= 1.63 × 10²⁰ Hz.
Now for β₁⁻ emission reaction
¹⁹⁸₇₉Au -----→ ¹⁹⁸₈₀Hg + ₋₁⁰e + E ( β₁⁻) + E( γ₁)
Now , E( γ₁) = 1.088 MeV
E(β₁⁻) = [ m( ¹⁹⁸₇₉Au) - m( ¹⁹⁸₈₀Hg) - ] × 931.5 - E( γ₁)
= (197.968233 -197.966760)× 931.5 -1.088 MeV
E(β₁⁻) = (1.372 -1.088) MeV
E(β₁⁻) = 0.284 MeV
Now for β₂⁻ emission reaction ,
¹⁹⁸₇₉Au -----→ ¹⁹⁸₈₀Hg + ₋₁⁰e + E ( β₂⁻) + E( γ₂)
E(β₂⁻) = [ m( ¹⁹⁸₇₉Au) - m( ¹⁹⁸₈₀Hg) - ] × 931.5 - 0.412
E(β₂⁻) = (1.372 - 0.412) MeV
E(β₂⁻) = 0.960 MeV
Hope it helps :-)
Attachments:
abhi178:
awesome answer
Similar questions
Math,
7 months ago
CBSE BOARD X,
7 months ago
English,
1 year ago
Math,
1 year ago
Science,
1 year ago