Math, asked by kp526757, 9 months ago

obtain the roots of the following equation using the method of completing square:

Attachments:

Answers

Answered by ItzAditt007
6

\rule{400}4

ANSWER:-

▪︎ Given equation:-

\tt\leadsto3 {y}^{2}   +  7y - 20

▪︎ To Find:-

  • The roots of the equation by completing square method.

\rule{400}2

▪︎ So,

• Firstly let us divide the whole equation by 3 to make the calculation easy:-

\tt\leadsto \frac{3 {y}^{2} + 7y - 20 = 0 }{3}  \\  \\ \tt\leadsto {y}^{2}  +  \frac{7y}{3}  -  \frac{20}{3}  = 0

\rule{400}2

▪︎ Now,

• Lets find the roots of the equation by completing square method-:

\sf\mapsto {y}^{2}  +  \frac{7y}{3}  -  \frac{20}{3}  = 0 \\  \\ \sf \mapsto {y}^{2} +  \frac{7y}{3}  =  \frac{20}{3}   \\  \\ \sf \mapsto {(y)}^{2}  + 2 \times y \times  \frac{7}{6} + ( \frac{7}{6}) {}^{2}  =  \frac{20}{3}   +  (\frac{7}{6} ) {}^{2}  \\  \\ \sf \mapsto(y +  \frac{7}{6}) {}^{2}   =  \frac{20}{3}  +  \frac{49}{36}  \\  \\ \sf \mapsto(y +  \frac{7}{6} ) {}^{2}    =  \frac{(20 \times 12) + 49}{36} \\ \\ \tt (  taking \: lcm) \\  \\ \sf \mapsto(y +  \frac{7}{6}) {}^{2}   =  \frac{240 + 49}{36}  \\  \\ \sf \mapsto(y +  \frac{7}{6} ) {}^{2}  =  \frac{289}{36}  \\  \\ \sf \mapsto(y +  \frac{7}{6} ) {}^{\cancel{2} } = \frac{ + }{}  ( \frac{17}{6} ) {}^{\cancel{2} } \\  \\ \sf \mapsto \: y +  \frac{7}{6}  =  \frac{ + }{} \:   \frac{17}{6}  \\  \\ \sf \mapsto \: y =  \frac{ + }{} \:  \frac{17}{6}  -  \frac{7}{6} \\  \\  \sf \mapsto  \: y =  \frac{ 17 - 7 }{6}  \:  \: or \:  \: y =  \frac{ - 17 - 7}{6}  \\  \\ \sf \mapsto \: y = \cancel \frac{10}{6}  \:  \: or \:  \: y = \cancel \frac{ - 24}{6}  \\  \\ \sf \large\red{\fbox{\mapsto \: y =  \frac{5}{3}  \:  \: or \:  \: y =  - 4}}

\rule{400}2

{\small{\green{\boxed{\bold{\mathcal{\therefore{The\:req.\:Roots\:are\:5/3\:And\:-4.}}}}}}}

\rule{400}4

Similar questions