Math, asked by shinzuu, 5 months ago

obtain the two regression equations from the following data and estimate the value of X when Y = 50 and the value of Y when X = 45. x= 40 50 38 60 65 48 30. y=38 60 55 70 60 48 30 ​

Answers

Answered by santramantu03
4

Answer:

Regression equation of Y on X ... Calculate the two regression equations of X on Y and Y on X from the data given below, taking deviations ...

Step-by-step explanation:

p

Answered by anjali1307sl
0

Answer:

The regression equation of X on Y: X = 0.73Y + 9.7.

And the value of X when Y is 50 = 46.2.

The regression equation of Y on X: Y  = 0.91X + 8.6.

And the value of Y when X is 45 = 49.5.

Step-by-step explanation:

Given data,

X                     Y

40                    38

50                    60

38                    55

60                    70

65                    60

48                    48

30                    30

\sum X = 331    \sum Y = 361

The two regression coefficient equations of X on Y and Y on X =?

The value of X when Y is 50 =?

The value of Y when X is 45 =?

Firstly, we have to find out the mean of X and Y.

Number of terms in both X and Y = 7

  • \bar{X} = \frac{\sum X}{N } = \frac{331}{7} = 47.2
  • \bar{Y} = \frac{\sum Y}{N } = \frac{361}{7} = 51.5

Now, the regression coefficient of X on Y:

  • b_{xy} = \frac{N\sum XY - (\sum X )( \sum Y )}{N\sum Y^{2}- (\sum Y )^{2}  }

And the regression coefficient of Y on X:

  • b_{yx} = \frac{N\sum XY - (\sum X )( \sum Y )}{N\sum X^{2}- (\sum X )^{2}  }

For this, we have to make a table to find the above mentioned terms in the formula:

X                     Y                        X²                         Y²                      XY

40                    38                      1600                       1444                  1520

50                    60                      2500                       3600                  3000

38                    55                      1444                       3025                  2090

60                    70                      3600                       4900                  4200

65                    60                      4225                       3600                  3900

48                    48                      2304                       2304                  2304

30                    30                      900                         900                    900

\sum X = 331   \sum Y = 361   \sum X^{2} = 16573     \sum Y^{2} = 19773     \sum XY = 17914

Now, the coefficient of regression of X on Y:

  • b_{xy} = \frac{ 7( 17914) - (331 )( 361 )}{7(19773)- (361 )^{2}  } = \frac{125398 - 119491}{138411- 130321  }  = \frac{5907}{8090  } = 0.73

And the coefficient of regression of Y on X:

  • b_{yx} = \frac{7(17914) - (331 )( 361 )}{7(16573)- (331 )^{2}  } = \frac{125398 - 119491}{116011- 109561  } = \frac{5907}{6450 } = 0.91

Now, the regression equation of X on Y: ( Y = 50 )

  • X - \bar{ X} = b_{xy}( Y - \bar{ Y} )
  • X - 47.2 = 0.73( Y - 51.5 )
  • X - 47.2 = 0.73Y - 37.5
  • X = 0.73Y + 9.7

As given Y = 50

  •  X = 0.73(50) + 9.7 = 36.5 + 9.7 = 46.2  

Now, the equation of regression of Y on X: ( X = 45 )

  • Y - \bar{ Y} = b_{yx}( X - \bar{ X} )
  • Y - 51.5 = 0.91( X -47.2 )
  • Y - 51.5 = 0.91X -42.9
  • Y  = 0.91X + 8.6

As given X = 45

  • Y  = 0.91(45) + 8.6   = 40.9 + 8.6 = 49.5

Hence,

  • The value of X when Y is 50 = 46.2.
  • The value of Y when X is 45 = 49.5.

 

Similar questions