Math, asked by mufiahmotors, 1 month ago

obtain the Zeroes of the polynomial root 3x^2 - 8 x + 4 root 3 and verify the relation between it's zeroes and coefficient. no spam spammers be away correct✅ answer needed no copies​

Answers

Answered by ITZURADITYAKING
12

let f(x)= 3 x 2 −8x+4 3 by splitting the middle term, we get f(x)= 3 x 2 −6x−2x+4 3 = 3 x(x−2 3 )−2(x−2 3 ) =( 3 x−2)(x−2 3 ) on putting f(x)=0, we get ( 3 x−2)(x−2 3 )=0 ⇒ 3 x−2=0 or x−2 ( 3=0) ⇒x= 3 2 orx=2 3 thus, the zeroes of the given polynomial 3 x 2 −8x+4 3 are 3 2 and 2 3 verification : sum of zeroes =α+β= 3 2 +2 3 = 3 2+6 = 3 8 or =− coefficient of x 2 coefficient of x =− 3 (−8) = 3 8 product of zeroes =αβ= 3 2 ×2 3 =4 or = coefficient of x 2 constant term = 3 4 3 =4 so, the relationship between the zeroes and the coefficients is verified.

Answered by brainlyanswerer83
23

Answer:

→ Hey Mate,

→ Given Question : obtain the Zeroes of the polynomial root 3x^2 - 8 x + 4 root 3 and verify the relation between it's zeroes and coefficient.

→ Step-by-step explanation:

→ Answer: -  \sqrt{3} x^2 - 8 x + 4\sqrt{3} = 0               ∵   ( a x^2 + bx + c= 0)

→                   \sqrt{3}x^2 - 6x -2x + 4\sqrt{3}  = 0

→                   \sqrt{3} x ( x - 2\sqrt{3} ) -2 ( x - 2\sqrt{3} )=0

→                   ( \sqrt{3 } x-2 ) ( x -2 \sqrt{3} ) = 0

→                   x = \frac{2}{\sqrt{3} }      x = 2\sqrt{3}

→                 a + B  = \frac{-b}{a} = -(\frac{-8}{\sqrt{3} } )= \frac{8}{\sqrt{3} }

→                a B= \frac{c}{a } = 4\frac{\sqrt{3} }{\sqrt{3} } = 4  Here \sqrt{3}  and   \sqrt{3} gets cancelled.

→                α + β

→             \frac{2}{\sqrt{3} } + 2\sqrt{3}

→            \frac{2+6}{\sqrt{3} } = \frac{8}{\sqrt{3} }

→          αβ= \frac{2}{\sqrt{3} }   ×  2\sqrt{3}      [ ∵ Here \sqrt{3}  and \sqrt{3} gets cancel ]

→        4 is the solution.

---------------------------------------------------------------------------------------------

Similar questions