Math, asked by CitrusTalk7584, 1 year ago

OD is the bisector of angle AOC ,OE is the bisector of angle BOC and OD is perpendicular to OE .show that AOB is collinear

Answers

Answered by Anonymous
292
Hope it helps!!!!!

Let ∠ AOC  =  2x 

So,

∠ AOD =  ∠ DOC  = x    
( As given OD is the bisector of ∠ AOC ) 

Let ∠ BOC  =  2y 

So,

∠ BOE  =  ∠ EOC  =  y                                               (  As given OE is bisector of ∠ BOC ) 

And,

∠ DOE  = 90°                                                              ( As given OD is perpendicular to OE  ) 

We can write ∠ DOE ,

As  : 

∠ DOE  =  ∠ DOC  + ∠ EOC  

∠ DOC  +  ∠ EOC  = 90​°               ------- ( 1 )                   ( As given ∠ DOE  = 90°   ) 

x  + y  =  90​°                                                               ( From our assumption )

∠ AOD  +  ∠ BOE  =  x  +  y  

So,

∠ AOD +  ∠ BOE  = ​ 90​°            --------- ( 2 )

Now we add equation 1 and 2 we get 

∠ DOC  +  ∠ EOC + ∠ AOD +  ∠ BOE = 180° 

So we can say that A , O and B are colinear .                         ( Hence proved )

#Be Brainly✌️
Attachments:
Answered by JackelineCasarez
29

Show that AOB is collinear

Step-by-step explanation:

Given that,

OE is the bisector of ∠BOC

OD is the bisector of ∠AOC

while OD ⊥ OE,

To prove:

AOB is collinear

Proof:

∠AOD = ∠COD (OD is the bisector of ∠AOD)

∠BOE = ∠COE (OE is the bisector of ∠BOC)

SO, ∠AOC = 2∠DOC

∠BOC = 2∠EOC

∠AOC + ∠BOC = 2(∠DOC + ∠EOC)

= 2 * 90°

= 180°

∵ AOB is a straight line and thus, AOB is collinear.

Learn more: Collinear points

brainly.in/question/1563798

Similar questions