Math, asked by Bhushan787, 1 year ago

Of alpha and beta are the zeros of the quadratic equations f (x)=x2-x-4then evaluate alpha2beta+beta2alpha

Answers

Answered by Jafar5505
1

Sol : We have quadratic equation x² - x - 4.

Given α and ß are their zeroes.

We know that,

Sum of roots = - ( coefficient of x )/ coefficient of x²

α + ß = - ( - 1 ) / 1

α + ß = 1 / 1 = 1.

Now,

Product of roots = constant term / coefficient of x²

αß = ( - 4 ) / 1

αß = -4.

1. 1/α + 1/ß - αß

    ß + α

=  -------------  - αß

        αß

By substituting the values of ( α + ß ) and ( αß ),

= ( 1 / -4 ) - ( - 4 )

= ( - 1 / 4 ) + 4

     - 1 + 16

=  ----------------

          4

= 15 / 4.

2. α/ß + ß/α + 2 ( 1/α + 1/ß ) + 3αß

   α² + ß² + 2ß + 2α

=  ---------------------------   + 3αß

            αß

     α² + ß² + 2 ( α+ß )

=  -------------------------  + 3αß   ----- eq.1

           αß

Now ,we don't have the value of ( α² + ß² ), so let's find it ,

( α + ß )² = α² + ß² + 2 αß

By substituting the values of ( α + ß ) and αß in above equation,

 ( 1 )² = α² + ß² + 2 ( - 4 )

 1 = α² + ß² - 8 

 α² + ß² = 1 + 8

 α² + ß² = 9

Now by substituting the values of ( α² + ß² ) ,αß and ( α + ß ) in eq.1,

   9 + 2 ( 1 )

= --------------- + 3 ( - 4 )

       -4

    9 + 2

=  --------------  - 12

      -4 

     - 11

=  --------------  - 12

       4

   -11 - 48

= --------------

        4

= -59/4.

                            


Bhushan787: Thanku jafar
Similar questions