Math, asked by teju5710, 1 year ago

of alpha and beta are zeros of the polynomial 2x^2-5x+3 find alpha^2 + beta^2

Answers

Answered by Anonymous
5
█ █ ▇ ▆ ▅ ▄ ▃ ▂ ▂ ▃ ▄ ▅ ▆ ▇ █ █

__________________________________

\huge\red{\mathfrak{Solution}}
__________________________________

2 {x}^{2} - 5x + 3

{ \red{\boxed{\alpha + \beta = \frac{ - b}{a}}}}

a = 2 \\ b = - 5 \\ c = 3

 = > \alpha + \beta = \frac{ - ( - 5)}{2} \\ = > \alpha + \beta = \frac{5}{2}

 \alpha \beta = \frac{c}{a} \\ = > \alpha \beta = \frac{3}{2}

{\red{\boxed{\boxed{ {( \alpha + \beta) }^{2} = { \alpha }^{2} + { \beta }^{2} + 2 \alpha \beta}}}}

putting \: the \: value \: of \: \alpha \beta \: nd \: ( \alpha + \beta ) \\ in \: above \: formulae

 =>{ (\frac{5}{2} )}^{2} = { \alpha }^{2} + { \beta }^{2} + 2( \frac{3}{2} )

 =>\frac{25}{4} = { \alpha }^{2} + { \beta }^{2} + \frac{6}{2}

=>( \frac{25}{4} - \frac{6}{2} ) = { \alpha }^{2} + { \beta }^{2}

=>( \frac{25 - 12}{4} ) = { \alpha }^{2} + { \beta }^{2}

{\green{\boxed{=> { \alpha }^{2} + { \beta }^{2} = \frac{13}{4} }}}

█ █ ▇ ▆ ▅ ▄ ▃ ▂ ▂ ▃ ▄ ▅ ▆ ▇ █ █

Still havng any doubt.... np ask me ☺

๓ﻉɦกѻѻɼ

#ιтѕ иαυgнту ℓυ¢ιfєя

yash924338: hii
yash924338: mehnoor
Similar questions