Math, asked by gargdeepak39953, 2 months ago

of
la1 = 3 1b1 = 4 and a. b =9, then
find la xbl​

Answers

Answered by BrainlyPopularman
9

GIVEN :

 \\ \bf \implies | \overrightarrow{a}| = 3 \: , \:| \overrightarrow{b}| =4\: , \: \overrightarrow{a}.\overrightarrow{b} = 9\\

TO FIND :

• Value of  \bf \overrightarrow{a} \times \overrightarrow{b} =?

SOLUTION :

 \\ \bf \implies\overrightarrow{a}.\overrightarrow{b} = 9\\

 \\ \bf \implies | \overrightarrow{a}| | \overrightarrow{b}| \cos( \theta) = 9\\

 \\ \bf \implies (3)(4)\cos( \theta) = 9\\

 \\ \bf \implies \cos( \theta) = \dfrac{9}{12}\\

 \\ \bf \implies \cos(\theta) = \dfrac{3}{4}\\

• We should write this as –

 \\ \bf \implies \sqrt{1 -  { \sin}^{2}(\theta)}  = \dfrac{3}{4}\\

• Square on both side –

 \\ \bf \implies 1 -  { \sin}^{2}(\theta)= \dfrac{9}{16}\\

 \\ \bf \implies  { \sin}^{2}(\theta)= 1 - \dfrac{9}{16}\\

 \\ \bf \implies  { \sin}^{2}(\theta)= \dfrac{16 - 9}{16}\\

 \\ \bf \implies  { \sin}^{2}(\theta)= \dfrac{7}{16}\\

 \\ \large \implies{ \boxed{ \bf\sin(\theta)= \dfrac{ \sqrt{7}}{4}}}\\

• Now let's find –

 \\ \implies \bf\overrightarrow{a} \times \overrightarrow{b} =| \overrightarrow{a}| | \overrightarrow{b}| \sin(\theta)\\

 \\ \implies \bf\overrightarrow{a} \times \overrightarrow{b} =(3)(4)\dfrac{ \sqrt{7}}{4}\\

 \\ \large \implies \red{ \boxed{\bf\overrightarrow{a} \times \overrightarrow{b} =3\sqrt{7}}}\\

Answered by sunnykrpatel54021
3

Step-by-step explanation:

GIVEN :–

 \\ \bf \implies | \overrightarrow{a}| = 3 \: , \:| \overrightarrow{b}| =4\: , \: \overrightarrow{a}.\overrightarrow{b} = 9\\

TO FIND :–

• Value of  \bf \overrightarrow{a} \times \overrightarrow{b} =?

SOLUTION :–

 \\ \bf \implies\overrightarrow{a}.\overrightarrow{b} = 9\\

 \\ \bf \implies | \overrightarrow{a}| | \overrightarrow{b}| \cos( \theta) = 9\\

 \\ \bf \implies (3)(4)\cos( \theta) = 9\\

 \\ \bf \implies \cos( \theta) = \dfrac{9}{12}\\

 \\ \bf \implies \cos(\theta) = \dfrac{3}{4}\\

• We should write this as –

 \\ \bf \implies \sqrt{1 -  { \sin}^{2}(\theta)}  = \dfrac{3}{4}\\

• Square on both side –

 \\ \bf \implies 1 -  { \sin}^{2}(\theta)= \dfrac{9}{16}\\

 \\ \bf \implies  { \sin}^{2}(\theta)= 1 - \dfrac{9}{16}\\

 \\ \bf \implies  { \sin}^{2}(\theta)= \dfrac{16 - 9}{16}\\

 \\ \bf \implies  { \sin}^{2}(\theta)= \dfrac{7}{16}\\

 \\ \large \implies{ \boxed{ \bf\sin(\theta)= \dfrac{ \sqrt{7}}{4}}}\\

• Now let's find –

 \\ \implies \bf\overrightarrow{a} \times \overrightarrow{b} =| \overrightarrow{a}| | \overrightarrow{b}| \sin(\theta)\\

 \\ \implies \bf\overrightarrow{a} \times \overrightarrow{b} =(3)(4)\dfrac{ \sqrt{7}}{4}\\

 \\ \large \implies \red{ \boxed{\bf\overrightarrow{a} \times \overrightarrow{b} =3\sqrt{7}}}\\

Similar questions