Math, asked by srinivasvk123, 9 months ago

of mdii of two spheres is 2:3. Find the ratio of their surface areas and volumes.

Answers

Answered by ArpitMishra506
2

HOPE THIS HEPLS YOU.

.

.

.

MARK ME AS BRAINLIEST ANS FOLLOW ME TOO.

Attachments:
Answered by ZzyetozWolFF
6

Correct question:

The ratio of the two spheres is 2 : 3. Find the ratio of their surface areas and volumes.

Answer:

Ratio of surface area = 4 : 9

Ratio of volumes of sphere = 8 : 27

Step-by-step explanation:

Given:

Ratio of radii = 2:3

To Find:

  • The ratio of surface area.

  • Ratio of volume.

Formula used :

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \implies \: Surface  \:  \:  \: area \:  \:  \:  of   \: \:  \: sphere = 4(\pi) {r}^{2}

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \implies \:   \:  \:  \: volume \:  \:  \:  of   \: \:  \: sphere =    {{\dfrac{4}{3} }\pi {r}^{3} }

Solution

Let the common ration be 'r'.

So, radius of first sphere is = 2r

Radius of second sphere = 3r

Finding ratio of surface area :

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \implies  Ratio \: of \: surface \: = \:   \dfrac{4\pi {(2r)}^{2} }{4\pi {(3r)}^{2} }

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \implies  Ratio \:  \:  \: of \:  \:  \: surface \:  \:  \: = \: \bigg( \dfrac{2r \times 2r }{3r \times 3r}  \bigg)

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \implies  Ratio \: of \: surface \: = \: \dfrac{4}{9}

\green{  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \implies  Ratio  \:  \: \: of \: \:  \:  surface \:  \:  \: = \:4 \:  :  \:  9}

Finding ratio of volume :

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \implies  Ratio \: of \: surface \: = \:  \bigg(\dfrac{  \frac{4}{3}\pi {(2r)}^{3}  }{ \frac{4}{3}   \pi {(3r)}^{3} }  \bigg)

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \implies  Ratio \:  \:  \: of \:  \:  \: surface  \:  \: \: = \: \:  \bigg( \dfrac{2r \times 2r \times 2r}{3r \times 3r \times 3r}  \bigg)

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \implies  Ratio \: of \: surface \: = \: \dfrac{8}{27}

\pink{  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \implies  Ratio \:  \:  \: of \:  \:  \: surface \:  \:  \: = \: \: 8 \:  :    \: 27}

Similar questions